Learn More
We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of \\nitary" subsets, satisfying a closure condition with respect to an orthogonality relation between subsets of the web, and proofs are interpreted by nitary sets. This model seems quite diierent in spirit from(More)
We present a category of locally convex topological vector spaces which is a model of propo-sitional classical linear logic, based on the standard concept of Köthe sequence spaces. In this setting, the " of course " connective of linear logic has a quite simple structure of commutative Hopf algebra. The co-Kleisli category of this linear category is a(More)
We introduce and study a version of Krivine's machine which provides a precise information about how much of its argument is needed for performing a computation. This information is expressed as a term of a resource lambda-calculus introduced by the authors in a recent article; this calculus can be seen as a fragment of the differential lambda-calculus. We(More)