Thomas D. Goddard

Learn More
The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who(More)
We describe methods for interactive visualization and analysis of density maps available in the UCSF Chimera molecular modeling package. The methods enable segmentation, fitting, coarse modeling, measuring and coloring of density maps for elucidating structures of large molecular assemblies such as virus particles, ribosomes, microtubules, and chromosomes.(More)
Structural modeling of macromolecular complexes greatly benefits from interactive visualization capabilities. Here we present the integration of several modeling tools into UCSF Chimera. These include comparative modeling by MODELLER, simultaneous fitting of multiple components into electron microscopy density maps by IMP MultiFit, computing of small-angle(More)
Many structures of large molecular assemblies such as virus capsids and ribosomes have been experimentally determined to atomic resolution. We consider four software problems that arise in interactive visualization and analysis of large assemblies: how to represent multimers efficiently, how to make cartoon representations, how to calculate contacts(More)
Cryo-electron microscopy produces 3D density maps of molecular machines, which consist of various molecular components such as proteins and RNA. Segmentation of individual components in such maps is a challenging task, and is mostly accomplished interactively. We present an approach based on the immersive watershed method and grouping of the resulting(More)
We have developed a color barcode labeling strategy for use with fluorescence in situ hybridization that enables the discrimination of multiple, identically labeled loci. Barcode labeling of chromosomes provides long-range path information and allows structural analysis at a scale and resolution beyond what was previously possible. Here, we demonstrate the(More)
Software for viewing three-dimensional models and maps of viruses, ribosomes, filaments, and other molecular assemblies is advancing on many fronts. New developments include molecular representations that offer better control over level of detail, lighting that improves the perception of depth, and two-dimensional projections that simplify data(More)
UCSF ChimeraX is next-generation software for the visualization and analysis of molecular structures, density maps, 3D microscopy, and associated data. It addresses challenges in the size, scope, and disparate types of data attendant with cutting-edge experimental methods, while providing advanced options for high-quality rendering (interactive ambient(More)
Leukocytes and other amoeboid cells change shape as they move, forming highly dynamic, actin-filled pseudopods. Although we understand much about the architecture and dynamics of thin lamellipodia made by slow-moving cells on flat surfaces, conventional light microscopy lacks the spatial and temporal resolution required to track complex pseudopods of cells(More)
Homology modeling predicts protein structures using known structures of related proteins as templates. We developed MULTIDOMAIN ASSEMBLER (MDA) to address the special problems that arise when modeling proteins with large numbers of domains, such as fibronectin with 30 domains, as well as cases with hundreds of templates. These problems include how to(More)