Learn More
The post-transcriptional role of Mss51p in mitochondrial gene expression is of great interest since MSS51 mutations suppress the respiratory defect caused by shy1 mutations. SHY1 is a Saccharomyces cerevisiae homolog of human SURF1, which when mutated causes a cytochrome oxidase assembly defect. We found that MSS51 is required for expression of the(More)
Millions of people worldwide suffer from nutritional imbalances of essential metals like zinc. These same metals, along with pollutants like cadmium and lead, contaminate soils at many sites around the world. In addition to posing a threat to human health, these metals can poison plants, livestock, and wildlife. Deciphering how metals are absorbed,(More)
To study in vivo the export of mitochondrially synthesized protein from the matrix to the intermembrane space, we have fused a synthetic mitochondrial gene, ARG8m, to the Saccharomyces cerevisiae COX2 gene in mitochondrial DNA. The Arg8mp moiety was translocated through the inner membrane when fused to the Cox2p C terminus by a mechanism dependent on(More)
The mitochondrial inner membrane protease is required for the maturation of mitochondrial proteins that are delivered to the intermembrane space. In the yeast Saccharomyces cerevisiae, this protease is now shown to be a complex that contains two catalytic subunits, Imp2p and the previously identified Imp1p. Primary structure similarity indicates that Imp1p(More)
Mitochondria maintain genome and translation machinery to synthesize a small subset of subunits of the oxidative phosphorylation system. To build up functional enzymes, these organellar gene products must assemble with imported subunits that are encoded in the nucleus. New findings on the early steps of cytochrome c oxidase assembly reveal how the(More)
Genetic code differences prevent expression of nuclear genes within Saccharomyces cerevisiae mitochondria. To bridge this gap a synthetic gene, ARG8m, designed to specify an arginine biosynthetic enzyme when expressed inside mitochondria, has been inserted into yeast mtDNA in place of the COX3 structural gene. This mitochondrial cox3::ARG8m gene fully(More)
The protein specified by the Saccharomyces cerevisiae nuclear gene PET111 specifically activates translation of the mitochondrially coded mRNA for cytochrome c oxidase subunit II (Cox2p). We found Pet111p specifically in mitochondria of both wild-type cells and cells expressing a chromosomal gene for a functional epitope-tagged form of Pet111p. Pet111p was(More)
In the nuclear genome of Saccharomyces cerevisiae, simple, repetitive DNA sequences (microsatellites) mutate at rates much higher than nonrepetitive sequences. Most of these mutations are deletions or additions of repeat units. The yeast mitochondrial genome also contains many microsatellites. To examine the stability of these sequences, we constructed a(More)
Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5'-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a(More)