Thomas D. Bennett

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc(More)
Electronic devices made from organic materials have the potential to support a more ecologically friendly and affordable future. However, the ability to fabricate devices with well-defined and reproducible electrical and optical properties is hindered by the sensitivity to the presence of chemical impurities. Oxygen in particular is an impurity that can(More)
A new member of the UiO-66 series of zirconium metal-organic frameworks (MOFs) is reported, and the postsynthetic bromination of its integral alkene moeities in a single-crystal to single-crystal manner is fully characterised. Nanoindentation is used to probe the bromination of unsaturated carbon-carbon bonds, in it and an analogous Zr MOF, which leads to(More)
Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated.(More)
Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS(More)
Zeolitic imidazolate frameworks (ZIFs) 7 and 9 are excellent candidates for CO2 adsorption and storage. Here, high-pressure X-ray diffraction is used to further understand their potential in realistic industrial applications. ZIF-7 and ZIF-9 are shown be able to withstand high hydrostatic pressures whilst retaining their porosity and structural integrity(More)
  • 1