Learn More
  • J M Lehr, Secretary A M Dawson Larsen, +26 authors Standards Activities
  • 2007
The IEEE Nuclear and Plasma Sciences Society is an organization, within the framework of the IEEE, of members with principal professional interest in the field of plasma science. All members of the IEEE are eligible for membership in the Society and will receive this TRANSACTIONS upon payment of the annual Society membership fee of $25.00 plus an annual(More)
We present a theory for nonlinear, multidimensional plasma waves with phase velocities near the speed of light. It is appropriate for describing plasma waves excited when all electrons are expelled out from a finite region by either the space charge of a short electron beam or the radiation pressure of a short intense laser. It works very well for the first(More)
We describe OSIRIS, a three-dimensional, relativistic, massively parallel, object oriented particle-in-cell code for modeling plasma based accelerators. Developed in Fortran 90, the code runs on multiple platforms (Cray T3E, IBM SP, Mac clusters) and can be easily ported to new ones. Details on the code's capabilities are given. We discuss the(More)
The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are(More)
A plasma-wakefield accelerator has accelerated particles by over 2.7 GeV in a 10 cm long plasma module. A 28.5 GeV electron beam with 1.8 x 10(10) electrons is compressed to 20 microm longitudinally and focused to a transverse spot size of 10 microm at the entrance of a 10 cm long column of lithium vapor with density 2.8 x 10(17) atoms/cm3. The electron(More)
A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel(More)
— A photo-ionized lithium source is developed for plasma acceleration applications. A homogeneous column of lithium neutral vapor with a density of 2 2 10 15 cm 03 is confined by helium gas in a heat-pipe oven. A UV laser pulse ionizes the vapor. In this device, the length of the neutral vapor and plasma column is 25 cm. The plasma density was measured by(More)
The transverse dynamics of a 28.5-GeV electron beam propagating in a 1.4 m long, (0-2)x10(14) cm(-3) plasma are studied experimentally in the underdense or blowout regime. The transverse component of the wake field excited by the short electron bunch focuses the bunch, which experiences multiple betatron oscillations as the plasma density is increased. The(More)
This Letter examines the electron-hosing instability in relation to the drivers of current and future plasma-wakefield experiments using fully three-dimensional particle-in-cell simulation models. The simulation results are compared to numerical solutions and to asymptotic solutions of the idealized analytic equations. The measured growth rates do not agree(More)