Learn More
The catalytic mechanism of the reductive half reaction of the quinoprotein methanol dehydrogenase (MDH) is believed to proceed either through a hemiketal intermediate or by direct transfer of a hydride ion from the substrate methyl group to the cofactor, pyrroloquinoline quinone (PQQ). A crystal structure of the enzyme-substrate complex of a similar(More)
The parameters for the OPLS-AA potential energy function have been extended to include some functional groups that are present in macrocyclic polyketides. Existing OPLS-AA torsional parameters for alkanes, alcohols, ethers, hemiacetals, esters, and ketoamides were improved based on MP2/aug-cc-pVTZ and MP2/aug-cc-pVDZ calculations. Nonbonded parameters for(More)
The ab initio structures of 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), semiquinone (PQQH), and dihydroquinone (PQQH2) have been determined and compared with ab initio structures of the (PQQ)Ca2+, (PQQH)Ca2+, and (PQQH2)Ca2+ complexes as well as the x-ray structure of (PQQ)Ca2+ bound at the active site of the methanol dehydrogenase (MDH) of methyltropic(More)
A molecular dynamics study was performed to compare the differences in the active-site dynamics of the wild-type and W137F mutant enzymes of 4-chlorobenzoyl-CoA dehalogenase. Only in the wild-type simulation are conformations formed between the catalytic Asp-145 and 4-chlorobenzoyl-CoA, which resemble the ab initio calculated gas-phase transition-state(More)
Two hydrogen-bonding motifs have been proposed to account for the extraordinary stability of polyamide "peptide" nucleic acid (PNA) hybrids with nucleic acids. These interresidue- and intraresidue-hydrogen-bond motifs were investigated by molecular mechanics calculations. Energy-minimized structures of Watson-Crick base-paired decameric duplexes of PNA with(More)
Standard free energies (DeltaGN degree) for formation of near attack conformers, those ground state conformers that can convert directly to the transition state, were calculated for the Claisen rearrangement of chorismate to prephenate in six different environments: water, wild-type enzymes from Bacillus subtilis and Escherichia coli, their Arg90Cit and(More)
Binding TS in preference to S and increasing TDeltaS++by freezing out motions in E X S and E X TS have been accepted as the driving forces in enzymatic catalysis; however, the smaller value of DeltaG++ for a one-substrate enzymatic reaction, as compared to its nonenzymatic counterpart, is generally the result of a smaller value of DeltaH++. Ground-state(More)
Conformational analysis of three small alcohols--ethanol, propanol, and isopropanol--was carried out by systematically improving the basis set and the level of electron correlation. Correlation energy contributions to conformational energies are strongly basis-set-dependent but accurate energy contributions can be obtained by extrapolation to the basis-set(More)