Thomas Butkiewicz

Learn More
Most of the algorithms used for research in mesh simplification and discrete levels of detail (LOD) work well for simplifying single objects with a large number of polygons. For a city-sized collection of simple buildings, using these traditional algorithms could mean the disappearance of an entire residential area in which the buildings tend to be smaller(More)
Many previous approaches to detecting urban change from LIDAR point clouds interpolate the points into rasters, perform pixel-based image processing to detect changes, and produce 2D images as output. We present a method of LIDAR change detection that maintains accuracy by only using the raw, irregularly spaced LIDAR points, and extracts relevant changes as(More)
Traditional geospatial information visualizations often present views that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in for local inspection, spatial awareness and comparison between regions become limited. In our model, coordinated visualizations are integrated within(More)
For 3D global visualization systems such as Google Earth, it is important to be able to render city-sized collections of relatively simple building models at fast speeds without losing spatial coherence. Since traditional mesh simplification algorithms are not designed for collections of simple models, we introduce a method of simplification through merging(More)
A perennially interesting research topic in the field of visual analytics is how to effectively develop systems that support organizational users' decision-making and reasoning processes. The problem is, however, most domain analytical practices generally vary from organization to organization. This leads to diverse designs of visual analytics systems in(More)
We present a probe-based interface for the exploration of the results of a geospatial simulation of urban growth. Because our interface allows the user great freedom in how they choose to define regions-of-interest to examine and compare, the classic geospatial analytic issue known as the modifiable areal unit problem (MAUP) quickly arises. The user may(More)
In time critical visual analytic environments collaboration between multiple expert users allows for rapid knowledge discovery and facilitates the sharing of insight. New collaborative display technologies, such as multi-touch tables, have shown great promise as the medium for such collaborations to take place. However, under such new technologies,(More)
A typical approach to exploring Light Detection and Ranging (LIDAR) datasets is to extract features using pre-defined segmentation algorithms. However, this approach only provides a limited set of features that users can investigate. To expand and represent the rich information inside the LIDAR data, we introduce a linked feature space concept that allows(More)
Most terrain models are created based on a sampling of real-world terrain, and are represented using linearly-interpolated surfaces such as triangulated irregular networks or digital elevation models. The existing methods for the creation of such models and representations of real-world terrain lack a crucial analytical consideration of factors such as the(More)
We present research focused on designing knowledgeassisted visual analytics (VA) systems for workers in organizational environments. We focus on business analysts and asset managers, who work collaboratively to analyze information and make decisions. Through extensive investigations in two organizational environments, we found that these users struggle with(More)