Learn More
The embryonic programme 'epithelial-mesenchymal transition' (EMT) is thought to promote malignant tumour progression. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is a crucial inducer of EMT in various human tumours, and was recently shown to promote invasion and metastasis of tumour cells. Here, we report that ZEB1 directly(More)
Invasion and metastasis of carcinomas is promoted by the activation of the embryonic 'epithelial to mesenchymal transition' (EMT) program, which triggers cellular mobility and subsequent dissemination of tumour cells. We recently showed that the EMT-activator ZEB1 (zinc finger E-box binding homeobox 1) is a crucial promoter of metastasis and demonstrated(More)
Invasion and dissemination of well-differentiated carcinomas are often associated with loss of epithelial differentiation and gain of mesenchyme-like capabilities of the tumor cells at the invasive front. However, when comparing central areas of primary colorectal carcinomas and corresponding metastases, we again found the same differentiated epithelial(More)
The dissemination of tumour cells is the prerequisite of metastases and is correlated with a loss of epithelial differentiation and the acquisition of a migratory phenotype, a hallmark of malignant tumour progression. A stepwise, irreversible accumulation of genetic alterations is considered to be the responsible driving force. But strikingly, metastases of(More)
Epithelial-to-mesenchymal transition (EMT) is a fundamental process in development and disease. Zinc-finger enhancer binding (ZEB) transcription factors (ZEB1 and ZEB2) are crucial EMT activators, whereas members of the miR-200 family induce epithelial differentiation. They are reciprocally linked in a feedback loop, each strictly controlling the expression(More)
Invasion and metastasis are the hallmarks of malignant tumor progression and the main cause of death in cancer. The embryonic program "epithelial-mesenchymal transition" (EMT) is thought to trigger invasion by allowing tumor cell dissemination. Here, we describe that the EMT-inducing transcriptional repressor ZEB1 promotes colorectal cancer cell metastasis(More)
Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumourigenesis, we identified transcriptional targets of the E-cadherin repressor ZEB1 in(More)
Most colorectal cancers have loss of function mutations in the adenomatosis polyposis coli (APC) tumor suppressor gene. This leads to accumulation of beta-catenin, which together with the DNA binding protein TCF-4 functions as a transcriptional activator. Recently defined target genes are c-myc and cyclin D1, linking the APC gene defect to the capacity for(More)
Erk/MAPK and TGFbeta signaling cause epithelial to mesenchymal transition (EMT) and metastasis in mouse mammary epithelial cells (EpH4) transformed with oncogenic Ras (EpRas). In trials to unravel underlying mechanisms, expression profiling for EMT-specific genes identified a secreted interleukin-related protein (ILEI), upregulated exclusively at the(More)
Why are many metastases differentiated? Invading and disseminating carcinoma cells can undergo an epithelial-mesenchymal transition (EMT), which is associated with a gain of stem cell-like behaviour. Therefore, EMT has been linked to the cancer stem cell concept. However, it is a matter of debate how subsequent mesenchymal-epithelial transition (MET) fits(More)