Thomas Bourdel

Learn More
We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1(More)
We report the observation of coexisting Bose-Einstein condensate (BEC) and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasipure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 microK approximately 0.2(1)T(C) = 0.2(1)T(F) where T(C) is the BEC critical temperature and(More)
We create weakly bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from(More)
We investigate the strongly interacting regime in an optically trapped 6Li Fermi mixture near a Feshbach resonance. The resonance is found at 800(40) G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics. We observe an unexpected and large shift (80 G) between the resonance peak and both the maximum of(More)
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms(More)
We report Bose-Einstein condensation of weakly bound 6Li2 molecules in a crossed optical trap near a Feshbach resonance. We measure a molecule-molecule scattering length of 170(+100)(-60) nm at 770 G, in good agreement with theory. We study the 2D expansion of the cloud and show deviation from hydrodynamic behavior in the BEC-BCS crossover region.
The phase transition of Bose-Einstein condensation was studied in the critical regime, where fluctuations extend far beyond the length scale of thermal de Broglie waves. We used matter-wave interference to measure the correlation length of these critical fluctuations as a function of temperature. Observations of the diverging behavior of the correlation(More)
We present iSense, a recently initiated FET project aiming to use Information and Communication Technologies (ICT) to develop a platform for portable quantum sensors based on cold atoms. A prototype of backpack-size highprecision force sensor will be built to demonstrate the concept. © Selection and peer-review under responsibility of FET11 conference(More)
We demonstrate a compact laser source suitable for trapping and cooling potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows us to generate the two required frequencies for cooling in a simple and robust apparatus. We successfully used this laser source to(More)
We study the horizontal expansion of vertically confined ultracold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by an optical speckle at an angle of 30° with respect to the horizontal plane, resulting in an effective(More)