Thomas Boulin

Learn More
Levamisole-sensitive acetylcholine receptors (L-AChRs) are ligand-gated ion channels that mediate excitatory neurotransmission at the neuromuscular junctions of nematodes. They constitute a major drug target for anthelminthic treatments because they can be activated by nematode-specific cholinergic agonists such as levamisole. Genetic screens conducted in(More)
Wiring of the nervous system requires that axons navigate to their targets and maintain their correct positions in axon fascicles after termination of axon outgrowth. We show here that the C. elegans fibroblast growth factor receptor (FGFR), EGL-15, affects both processes in fundamentally distinct manners. FGF-dependent activation of the EGL-15 tyrosine(More)
In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a(More)
BACKGROUND AND PURPOSE The cholinergic agonist levamisole is widely used to treat parasitic nematode infestations. This anthelmintic drug paralyses worms by activating a class of levamisole-sensitive acetylcholine receptors (L-AChRs) expressed in nematode muscle cells. However, levamisole efficacy has been compromised by the emergence of drug-resistant(More)
BACKGROUND The ventral midline is a prominent structure in vertebrate and invertebrate nervous systems that provides crucial topological information for guiding axons to their appropriate target destinations. Rather than being composed of specialized midline glia cells as in many other species, the embryonic midline of the nematode Caenorhabditis elegans is(More)
We describe a protocol for mutating genes in the nematode Caenorhabditis elegans using the Mos1 transposon of Drosophila mauritiana. Mutated genes containing a Mos1 insertion are molecularly tagged by this heterologous transposable element. Mos1 insertions can therefore be identified in as little as 3 weeks using only basic molecular biology techniques.(More)
Copyright: © 2006 Thomas Boulin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Both of these authors contributed equally To whom correspondence should be(More)
Patterns of gene expression are under precise spatial and temporal control. A particularly striking example is represented by several members of the zig gene family, which code for secreted immunoglobulin domain proteins required for maintaining ventral nerve cord organization in Caenorhabditis elegans. These genes are coordinately expressed in a single(More)
Vertebrate and invertebrate genomes contain scores of small secreted or transmembrane proteins with two immunoglobulin (Ig) domains. Many of them are expressed in the nervous system, yet their function is not well understood. We analyze here knockout alleles of all eight members of a family of small secreted or transmembrane Ig domain proteins, encoded by(More)
The number of nicotinic acetylcholine receptors (AChRs) present in the plasma membrane of muscle and neuronal cells is limited by the assembly of individual subunits into mature pentameric receptors. This process is usually inefficient, and a large number of the synthesized subunits are degraded by endoplasmic reticulum (ER)-associated degradation. To(More)