Learn More
Presynaptic terminals are specialized for mediating rapid fusion of synaptic vesicles (SVs) after calcium influx. The regulated trafficking of SVs likely results from a highly organized cytomatrix. How this cytomatrix links SVs, maintains them near the active zones (AZs) of release, and organizes docked SVs at the release sites is not fully understood. To(More)
MOTIVATION The cell nucleus is a highly organized cellular organelle that contains the genetic material. The study of nuclear architecture has become an important field of cellular biology. Extracting quantitative data from 3D fluorescence imaging helps understand the functions of different nuclear compartments. However, such approaches are limited by the(More)
Electron microscopy allows the analysis of synaptic ultrastructure and its modifications during learning or in pathological conditions. However, conventional electron microscopy uses aldehyde fixatives that alter the morphology of the synapse by changing osmolarity and collapsing its molecular components. We have used high-pressure freezing (HPF) to capture(More)
Dual endosymbioses involving methane- and sulphur-oxidizing bacteria occur in the gills of several species of mussels from deep-sea hydrothermal vents and cold seeps. Variations of total and relative abundances of symbionts depending on local environmental parameters are not yet understood, due to a lack of reliable quantification of bacteria in the host(More)
UNLABELLED Three-dimensional fluorescence in situ hybridization (3D-FISH) is used to study the organization and the positioning of chromosomes or specific sequences such as genes or RNA in cell nuclei. Many different programs (commercial or free) allow image analysis for 3D-FISH experiments. One of the more efficient open-source programs for automatically(More)
BACKGROUND Detection of fluorescent probes by fluorescence in situ hybridization in cells with preserved three-dimensional nuclear structures (3D-FISH) is useful for studying the organization of chromatin and localization of genes in interphase nuclei. Fast and reliable measurements of the relative positioning of fluorescent spots specific to subchromosomal(More)
Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment(More)
Atomic force microscopy (AFM) has developed into a powerful tool in membrane biology. AFM features an outstanding signal-to-noise ratio that allows substructures on individual macromolecules to be visualized. Most recently, AFM topographs have shown the supramolecular assembly of the bacterial photosynthetic complexes in native membranes. Here, we have(More)
Junctional microdomains, paradigm for membrane protein segregation in functional assemblies, in eye lens fiber cell membranes are constituted of lens-specific aquaporin-0 tetramers (AQP0(4)) and connexin (Cx) hexamers, termed connexons. Both proteins have double function to assure nutrition and mediate adhesion of lens cells. Here we use high-speed atomic(More)
Energy-filtering transmission electron microscopy (EFTEM) allows the determination of elemental distributions out of a sequence of energy filtered images. Combined with electron tomography, EFTEM is a powerful tool to obtain three-dimensional chemical maps from sub-cellular structures. However, there is no existing software in the public-domain for the(More)