Learn More
Quorum sensing (QS) communication systems are thought to afford bacteria with a mechanism to strategically cause disease. One example is Pseudomonas aeruginosa, which infects immunocompromised individuals such as cystic fibrosis patients. The authors have previously documented that blockage of the QS systems not only attenuates Ps. aeruginosa but also(More)
With the widespread appearance of antibiotic-resistant bacteria, there is an increasing demand for novel strategies to control infectious diseases. Furthermore, it has become apparent that the bacterial life style also contributes significantly to this problem. Bacteria living in the biofilm mode of growth tolerate conventional antimicrobial treatments. The(More)
Biofilms associated with the human body, particularly in typically sterile locations, are difficult to diagnose and treat effectively because of their recalcitrance to conventional antibiotic therapy and host immune responses. The study of biofilms in medicine today requires a translational approach, with examination of clinically relevant biofilms in the(More)
Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute(More)
During infection, Pseudomonas aeruginosa employs bacterial communication (quorum sensing [QS]) to coordinate the expression of tissue-damaging factors. QS-controlled gene expression plays a pivotal role in the virulence of P. aeruginosa, and QS-deficient mutants cause less severe infections in animal infection models. Treatment of cystic fibrosis (CF)(More)
BACKGROUND Chronic lung infection with Pseudomonas aeruginosa is the most severe complication for patients with cystic fibrosis (CF). This infection is characterised by endobronchial mucoid biofilms surrounded by numerous polymorphonuclear leucocytes (PMNs). The mucoid phenotype offers protection against the PMNs, which are in general assumed to mount an(More)
Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients is characterized by persisting mucoid biofilms in hypoxic endobronchial mucus. These biofilms are surrounded by numerous polymorphonuclear leucocytes (PMNs), which consume a major part of present molecular oxygen (O(2)) due to production of superoxide (O(2)(-)). In this study, we(More)
A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other components of the body's defence system. The(More)
Biofilms cause chronic infections in tissues or by developing on the surfaces of medical devices. Biofilm infections persist despite both antibiotic therapy and the innate and adaptive defence mechanisms of the patient. Biofilm infections are characterized by persisting and progressive pathology due primarily to the inflammatory response surrounding the(More)
Quorum sensing (QS) denotes a density-dependent mode of inter-bacterial communication based on signal transmitter molecules. Active QS is present during chronic infections with the opportunistic pathogen Pseudomonas aeruginosa in immunocompromised patients. The authors have previously demonstrated a QS-regulated tolerance of biofilm bacteria to the(More)