Learn More
Human congestive heart failure is characterized by complex neurohumoral activation associated with the up-regulation of vasoconstricting and salt-retaining mediators and the compensatory rise of counter-regulatory hormones. In the present study, we provide the first evidence that relaxin (RLX), known as a pregnancy hormone, represents a potential(More)
The peptide urotensin-II (U-II) has been described as most potent vasoconstrictor identified so far, but plasma values in humans and its role in cardiovascular pathophysiology are unknown. We investigated circulating urotensin-II and its potential role in human congestive heart failure (CHF). We enrolled control individuals (n=13; cardiac index [CI],(More)
AIMS Human relaxin-2 influences renal and cardiovascular functions. We investigated its effects on experimental endothelial dysfunction. METHODS AND RESULTS Acetylcholine-mediated vasodilation of rat aortic rings, impaired by 48 h tumour necrosis factor-α (TNF-α) treatment, was dose-dependently improved by relaxin co-incubation, an effect sensitive to(More)
The insulin-related peptide hormone relaxin (Rlx) is known as pregnancy hormone for decades. In the 1980s, researchers began to recognize the highly intriguing fact that Rlx plays a role in a multitude of physiological processes far beyond pregnancy and reproduction. So, Rlx's contribution to the regulation of vasotonus, plasma osmolality, angiogenesis,(More)
BACKGROUND Relaxin is upregulated in human heart failure (HF). Animal and clinical data suggest beneficial hemodynamic and renal effects from vasodilation. We determined safety, tolerability, and pharmacodynamic effects of human Relaxin in stable HF. METHODS AND RESULTS Sixteen patients were treated with open-label intravenous Relaxin in 3 dose-escalation(More)
Relaxin is a naturally occurring peptide hormone that plays a central role in the hemodynamic and renovascular adaptive changes that occur during pregnancy. Triggering similar changes could potentially be beneficial in the treatment of patients with heart failure. The effects of relaxin include the production of nitric oxide, inhibition of endothelin,(More)
The insulin-like peptide relaxin is a central hormone of pregnancy, but it also produces anti-fibrotic, myocardial, renal, central-nervous, and vascular effects. Recently, two G protein-coupled receptors, LGR7 and LGR8, have been identified as relaxin receptors. Prompted by reports on immunoregulatory effects of relaxin, we investigated possible(More)
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with(More)
We have recently demonstrated that relaxin (RLX) acts as compensatory mediator in human heart failure. RLX inhibits the stimulation of endothelin-1, the most potent vasoconstrictor in heart failure. Upregulation of the endothelin type-B receptor (ET(B)), which mediates endothelin-1 clearance and endothelial release of NO, represents a pivotal mode of RLX(More)