Thomas Balle

Learn More
The neuronal α4β2 nicotinic acetylcholine receptors exist as two distinct subtypes, (α4)(2)(β2)(3) and (α4)(3)(β2)(2), and biphasic responses to acetylcholine and other agonists have been ascribed previously to coexistence of these two receptor subtypes. We offer a novel and radical explanation for the observation of two distinct agonist sensitivities.(More)
Open3DQSAR is a freely available open-source program aimed at chemometric analysis of molecular interaction fields. MIFs can be imported from different sources (GRID, CoMFA/CoMSIA, quantum-mechanical electrostatic potential or electron density grids) or generated by Open3DQSAR itself. Much focus has been put on automation through the implementation of a(More)
We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and(More)
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that belong to the superfamily of Cys loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine-binding proteins (AChBPs) that share significant sequence homology with the amino-terminal(More)
An open-source, cross-platform software aimed at conformer generation and unsupervised rigid-body molecular alignment is presented. Different algorithms have been implemented to perform single and multi-conformation superimpositions on one or more templates. Alignments can be accomplished by matching pharmacophores, heavy atoms or a combination of the two.(More)
The ligand-gated ion channels in the Cys-loop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA, and glycine. Cys-loop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel class of negative allosteric modulators of the 5-HT(3)(More)
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed), activated (open), and desensitized (closed) states. The acetylcholine binding protein (AChBP) is a structural(More)
Highly flexible proteins constitute a significant challenge in molecular docking within the field of drug design. Depending on the efficacy of the bound ligand, the ligand-binding domain (LBD) of the ionotropic glutamate receptor iGluR2 adopts markedly different degrees of domain closure due to large-scale domain movements. With the purpose of predicting(More)
GABA(A) receptors (GABA(A)Rs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in, e.g., ligand binding and functional properties of this pharmaceutically important target. Homology modeling is a necessary tool in this regard because(More)
The α4β2 subtype of the nicotinic acetylcholine receptor has been pursued as a drug target for treatment of psychiatric and neurodegenerative disorders and smoking cessation aids for decades. Still, a thorough understanding of structure-function relationships of α4β2 agonists is lacking. Using binding experiments, electrophysiology and x-ray crystallography(More)