Learn More
Spinal contusion pathology in rats and mice is distinct. Cystic cavities form at the impact site in rats while a dense connective tissue matrix occupies the injury site in mice. Because inflammatory cells coordinate mechanisms of tissue injury and repair, we evaluated whether the unique anatomical presentation in spinally injured rats and mice is associated(More)
Spinal cord trauma activates the immune system and elicits leukocyte recruitment to the site of injury. This increase in immunological activity contributes to acute lesion expansion over a period of days to weeks following the initial trauma. At the same time, inflammatory cells and mediators facilitate endogenous repair processes such as axonal sprouting(More)
Recruitment of inflammatory leukocytes to the injured spinal cord is a physiological response that is associated with the production of cytokines and proteinases that are involved in host defense and wound repair. Cells in the spinal cord are mainly post-mitotic and tissue regeneration is poor; thus, these inflammatory mediators can exacerbate the damage to(More)
Lymphocytes respond to myelin proteins after spinal cord injury (SCI) and may contribute to post-traumatic secondary degeneration. However, there is increasing evidence that autoreactive T-lymphocytes may also convey neuroprotection and promote functional recovery after CNS injury. To clarify the role of myelin autoreactive lymphocytes after SCI, we(More)
Individuals with spinal cord injury (SCI) are highly susceptible to infection. This post-traumatic immune suppression is thought to occur via alterations in sympathetic nervous system (SNS) or hypothalamic-pituitary-adrenal (HPA) axis function. Normally, the HPA axis and SNS help coordinate proper immune function. After SCI, the HPA axis becomes activated(More)
Electrowetting on dielectric and dielectrophoretic electromechanical mechanisms dominate microfluidic actuation in the low- and high-frequency limits, respectively. The frequency-dependent relationship between these two mechanisms has been clarified by the Maxwell stress tensor and a simple RC circuit model. In this paper, we report extensive height-of-rise(More)
When voltage is suddenly applied to vertical, parallel dielectric-coated electrodes dipped into a liquid with finite conductivity, the liquid responds by rising up to reach a new hydrostatic equilibrium height. On the microfluidic scale, the dominating mechanism impeding this electromechanically induced actuation appears to be a dynamic friction force that(More)
Electrowetting on dielectric-coated electrodes involves two independently observable phenomena: (i) the well-known voltage dependence of the apparent contact angle and (ii) a central electromechanical force that can be exploited to move and manipulate small liquid volumes on a substrate. The electromechanical force does not depend upon field-mediated(More)