Learn More
In addition to the RNA polymerases (RNAPs) transcribing the nuclear genes, eukaryotic cells also require RNAPs to transcribe the genes of the mitochondrial genome and, in plants, of the chloroplast genome. The plant Arabidopsis thaliana was found to contain two nuclear genes similar to genes encoding the mitochondrial RNAP from yeast and RNAPs of(More)
Microcystin, a hepatotoxin known to be the cause of animal and human deaths, is produced by the bloom-forming cyanobacterium Microcystis aeruginosa in freshwater bodies worldwide. The toxin is produced nonribosomally via a multifunctional enzyme complex, consisting of both peptide synthetase and polyketide synthase modules coded for by the mcy gene cluster.(More)
The effects of microcystins on Daphnia galeata, a typical filter-feeding grazer in eutrophic lakes, were investigated. To do this, the microcystin-producing wild-type strain Microcystis aeruginosa PCC7806 was compared with a mcy- PCC7806 mutant, which could not synthesize any variant of microcystin due to mutation of a microcystin synthetase gene. The(More)
We investigated the intestinal uptake and adverse effects of microcystins ingested with Microcystis on Daphnia galeata. The gut structure, blood microcystin concentration, appearance, and movements of Daphnia fed Microcystis PCC 7806 or a microcystin-deficient PCC 7806 mutant were monitored over time. Microcystins were rapidly taken up from the digestive(More)
Microcystins represent an extraordinarily large family of cyclic heptapeptide toxins that are nonribosomally synthesized by various cyanobacteria. Microcystins specifically inhibit the eukaryotic protein phosphatases 1 and 2A. Their outstanding variability makes them particularly useful for studies on the evolution of structure-function relationships in(More)
Mitochondrial genes in the plant Arabidopsis thaliana are transcribed by two phage-type RNA polymerases encoded in the nucleus. Little is known about cis-elements that are recognized by these enzymes and mediate the transcription of the Arabidopsis mitochondrial genome. Here, 30 transcription initiation sites of 12 mitochondrial genes and gene clusters have(More)
Most chloroplast mRNAs are processed from larger precursors. Several mechanisms have been proposed to mediate these processing events, including site-specific cleavage and the stalling of exonucleases by RNA structures. A protein barrier mechanism was proposed based on analysis of the pentatricopeptide repeat (PPR) protein PPR10: PPR10 binds two(More)
—To date, few polarimetric weather radars have exhibited the capability to measure full scattering matrices. In contrast, in the synthetic aperture radar (SAR) community, considerable experience has been gained in dealing with complete scattering matrices and their statistical behavior. This paper aims to place weather radar parameters in a wider context in(More)
Although chloroplast genomes are small, the transcriptional machinery is very complex in plastids of higher plants. Plastidial genes of higher plants are transcribed by plastid-encoded (PEP) and nuclear-encoded RNA polymerases (NEP). The nuclear genome of Arabidopsis contains two candidate genes for NEP, RpoTp and RpoTmp, both coding for phage-type RNA(More)
BACKGROUND The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering cyanobacteria into forced fuel producers(More)