Thomas Arnebrant

Learn More
Ellipsometry and mechanically assisted sodium dodecyl sulphate elution was utilized to study the adsorption of human serum albumin (HSA), human immunoglobulin G (IgG), and laminin-1, as well as competitive adsorption from a mixture of these proteins on spin-coated and sintered hydroxyapatite (HA) surfaces, respectively. The HA surfaces were characterized(More)
Adsorption of the cationic salivary proteins lactoferrin, lactoperoxidase, lysozyme and histatin 5 to pure (hydrophilic) and methylated (hydrophobized) silica surfaces was investigated by in situ ellipsometry. Effects of concentration (</=10 microgml(-1), for lysozyme </=200 microgml(-1)) and dependence of surface wettability, as well as adsorption kinetics(More)
Mucus covers the epithelium found in all intestinal tracts, where it serves as an important protecting barrier, and pharmaceutical drugs administrated by the oral, rectal, vaginal, ocular, or nasal route need to penetrate the mucus in order to reach their targets. Furthermore, the diffusion in mucus as well as the viscosity of mucus in the eyes, nose and(More)
This study evaluated the anti-biofilm activity of sphingosine, phytosphingosine (PHS), and sphinganine for: (i) anti-adherence activity on hydroxyapatite (HA) surfaces; and (ii) bactericidal activity on different Streptococcus mutans phenotypes (i.e. planktonic cells and cells from a disrupted biofilm). For this, HA discs treated with sphingolipids were(More)
Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO(More)
  • 1