Thomas Altmann

Learn More
Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies(More)
Multiparallel analyses of mRNA and proteins are central to today's functional genomics initiatives. We describe here the use of metabolite profiling as a new tool for a comparative display of gene function. It has the potential not only to provide deeper insight into complex regulatory processes but also to determine phenotype directly. Using gas(More)
The cpd mutation localized by T-DNA tagging on Arabidopsis chromosome 5-14.3 inhibits cell elongation controlled by the ecdysone-like brassinosteroid hormone brassinolide. The cpd mutant displays de-etiolation and derepression of light-induced genes in the dark, as well as dwarfism, male sterility, and activation of stress-regulated genes in the light. The(More)
Stomata are specialized cellular structures in the epidermis of aerial plant organs that control gas exchange (H(2)O release and CO(2) uptake) between leaves and the atmosphere by modulating the aperture of a pore flanked by two guard cells. Stomata are nonrandomly distributed, and their density is controlled by endogenous and environmental factors. To gain(More)
Genetic markers such as single nucleotide polymorphisms (SNPs) are essential tools for positional cloning, association, or quantitative trait locus mapping and the determination of genetic relationships between individuals. We identified and characterized a genome-wide set of SNP markers by generating 10,706 expressed sequence tags (ESTs) from cDNA(More)
Population-based methods for the genetic mapping of adaptive traits and the analysis of natural selection require that the population structure and demographic history of a species are taken into account. We characterized geographic patterns of genetic variation in the model plant Arabidopsis thaliana by genotyping 115 genome-wide single nucleotide(More)
Plant growth and development are tightly linked to primary metabolism and are subject to natural variation. In order to obtain an insight into the genetic factors controlling biomass and primary metabolism and to determine their relationships, two Arabidopsis thaliana populations [429 recombinant inbred lines (RIL) and 97 introgression lines (IL), derived(More)
Gene expression in response to Fe deficiency was analyzed in Arabidopsis roots and shoots through the use of a cDNA collection representing at least 6,000 individual gene sequences. Arabidopsis seedlings were grown 1, 3, and 7 d in the absence of Fe, and gene expression in roots and shoots was investigated. Following confirmation of data and normalization(More)
 In addition to OPR1 and OPR2, two isoenzymes of 12-oxophytodienoate reductase, a third isoform (OPR3) has recently been identified in Arabidopsis thaliana (L.) Heynh. The expression of the OPR3 gene is induced not only by a variety of stimuli, such as touch, wind, wounding, UV-light and application of detergent, but also by brassinosteroids. The three(More)
In many plants, single nucleotide polymorphism (SNP) markers are increasingly becoming the marker system of choice. However, for many crop plants there are surprisingly low numbers of validated SNP markers available although they are needed in large numbers for studies regarding genetic variation, linkage mapping, population structure analysis, association(More)