We construct projective moduli spaces for torsion-free sheaves on noncommutative projective planes. These moduli spaces vary smoothly in the parameters describing the noncommutative plane and haveâ€¦ (More)

Fix a ruled surface S obtained as the projective completion of a line bundle L on a complex elliptic curve C; we study the moduli problem of parametrizing certain pairs consisting of a sheaf E on Sâ€¦ (More)

We study interactions between the categories of D-modules on smooth and singular varieties. For a large class of singular varieties Y , we use an extension of the Grothendieckâ€“Sato formula to showâ€¦ (More)

Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We giveâ€¦ (More)

The Calogero-Moser (or CM) particle system [Ca1, Ca2] and its generalizations appear, in a variety of ways, in integrable systems, nonlinear PDE, representation theory, and string theory. Moreover,â€¦ (More)

We present a bridge between the KP soliton equations and the Calogeroâ€“Moser many-body systems through noncommutative algebraic geometry. The Calogero-Moser systems have a natural geometricâ€¦ (More)

Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We giveâ€¦ (More)

Nevins, T.A., Degrees of convex dependence in recursively enumerable vector spaces, Annals of Pure and Applied Logic 60 (1993) 31-47. Let W be a recursively enumerable vector space over a recursiveâ€¦ (More)