Learn More
In this review, we examine the evidence for mammographic density as an independent risk factor for breast cancer, describe the risk prediction models that have incorporated density, and discuss the current and future implications of using mammographic density in clinical practice. Mammographic density is a consistent and strong risk factor for breast cancer(More)
Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com. Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional(More)
There is evidence that progesterone plays a role in the aetiology of invasive epithelial ovarian cancer. Therefore, genes involved in pathways that regulate progesterone may be candidates for susceptibility to this disease. Previous studies have suggested that genetic variants in the progesterone receptor gene (PGR) may be associated with ovarian cancer(More)
OBJECTIVE Whether dietary patterns, rather than single foods or nutrients, are associated with breast density is not known. We investigated this in the Minnesota Breast Cancer Family Study. METHODS Participants completed a 153-item food frequency questionnaire and provided screening mammograms for breast density assessment using a computer-assisted(More)
Mediterranean populations' lower breast cancer incidence has been attributed to a traditional Mediterranean diet, but few studies have quantified Mediterranean dietary pattern intake in relation to breast cancer. We examined the association of a Mediterranean diet scale (MDS) with mammographic breast density as a surrogate marker for breast cancer risk.(More)
The chromosome 17q23 region is frequently amplified in breast tumors. Gain of the region is present in 50% of BRCA1-associated breast tumors and 87% of BRCA2-associated breast tumors. The amplification frequency of the RPS6KB1 and TBX2 oncogenes from this amplicon was compared in 27 BRCA1 and BRCA2 mutant breast tumors, 15 breast tumors from high-risk(More)
Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array.(More)
High-risk susceptibility genes explain <40% of the excess risk of familial ovarian cancer. Therefore, other ovarian cancer susceptibility genes are likely to exist. We have used a single nucleotide polymorphism (SNP)–tagging approach to evaluate common variants in 13 genes involved in cell cycle control— of invasive epithelial ovarian cancer. We used a(More)
The search for genetic variants associated with ovarian cancer risk has focused on pathways including sex steroid hormones, DNA repair, and cell cycle control. The Ovarian Cancer Association Consortium (OCAC) identified 10 single-nucleotide polymorphisms (SNPs) in genes in these pathways, which had been genotyped by Consortium members and a pooled analysis(More)
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from(More)