Thomas A. Peterson

Learn More
MOTIVATION A major goal of biomedical research in personalized medicine is to find relationships between mutations and their corresponding disease phenotypes. However, most of the disease-related mutational data are currently buried in the biomedical literature in textual form and lack the necessary structure to allow easy retrieval and visualization. We(More)
UNLABELLED Domain mapping of disease mutations (DMDM) is a database in which each disease mutation can be displayed by its gene, protein or domain location. DMDM provides a unique domain-level view where all human coding mutations are mapped on the protein domain. To build DMDM, all human proteins were aligned to a database of conserved protein domains(More)
Large-scale tumor sequencing projects are now underway to identify genetic mutations that drive tumor initiation and development. Most studies take a gene-based approach to identifying driver mutations, highlighting genes mutated in a large percentage of tumor samples as those likely to contain driver mutations. However, this gene-based approach usually(More)
BACKGROUND AND OBJECTIVE With recent breakthroughs in high-throughput sequencing, identifying deleterious mutations is one of the key challenges for personalized medicine. At the gene and protein level, it has proven difficult to determine the impact of previously unknown variants. A statistical method has been developed to assess the significance of(More)
The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the(More)
  • 1