Thomas A. Cleland

Learn More
Contrast enhancement within primary stimulus representations is a common feature of sensory systems that regulates the discrimination of similar stimuli. Whereas most sensory stimulus features can be mapped onto one or two dimensions of quality or location (e.g., frequency or retinotopy), the analogous similarities among odor stimuli are distributed(More)
Neurogenesis, the division, migration, and differentiation of new neurons, occurs throughout life. Brain derived neurotrophic factor (BDNF) has been identified as a potential signaling molecule regulating neurogenesis in the subventricular zone (SVZ), but its functional consequences in vivo have not been well defined. We report marked and unexpected(More)
Sensory representations are repeatedly transformed by neural computations that determine which of their attributes can be effectively processed at each stage. Whereas some early computations are common across multiple sensory systems, they can utilize dissimilar underlying mechanisms depending on the properties of each modality. Recent work in the olfactory(More)
Carbon chain length in several classes of straight-chain aliphatic odorants has been proposed as a model axis of similarity for olfactory research, on the basis of successes of studies in insect and vertebrate species. To assess the influence of task on measured perceptual similarities among odorants and to demonstrate that the systematic similarities(More)
The perceptual quality of odors usually is robust to variability in concentration. However, maps of neural activation across the olfactory bulb glomerular layer are not stable in this respect; rather, glomerular odor representations both broaden and intensify as odorant concentrations are increased. The relative levels of activation among glomeruli, in(More)
Habituation is a simple form of memory, yet its neurobiological mechanisms are only beginning to be understood in mammals. In the olfactory system, the neural correlates of habituation at a fast experimental timescale involving very short intertrial intervals (tens of seconds) have been shown to depend on synaptic adaptation in olfactory cortex. In(More)
Contrast enhancement via lateral inhibitory circuits is a common mechanism in sensory systems. We here employ a computational model to show that, in addition to shaping experimentally observed molecular receptive fields in the olfactory bulb, functionally lateral inhibitory circuits can also mediate the elemental and configurational properties of odor(More)
Understanding and treatment of spinal cord pathology is limited in part by a lack of time-lapse in vivo imaging strategies at the cellular level. We developed a chronically implanted spinal chamber and surgical procedure suitable for time-lapse in vivo multiphoton microscopy of mouse spinal cord without the need for repeat surgical procedures. We routinely(More)
The olfactory system is capable of detecting odorants at very low concentrations. Physiological experiments have demonstrated odorant sensitivities down to the picomolar range in preparations from the sensory epithelium. However, the contemporary model for olfactory signal transduction provides that odorants bind to olfactory receptors with relatively low(More)
Classical lateral inhibition, which relies on spatially ordered neural representations of physical stimuli, cannot decorrelate sensory representations in which stimulus properties are represented non-topographically. Recent theoretical and experimental studies indicate that such a non-topographical representation of olfactory stimuli predominates in(More)