Learn More
Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally(More)
Performance assessment and design evaluation of the proposed repository at Yucca Mountain are facilitated by a thermohydrologic modeling tool that simultaneously accounts for processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and accounts for processes at the multi-kilometer scale of the(More)
Several numerical codes have been used to simulate radionuclide transport in fractured rock systems. The validation of such numerical codes can be accomplished by comparison of numerical simulations against appropriate analytical solutions. In this paper, we present analytical solutions for the reactive transport of N-member radionuclide chains (i.e.,(More)
We report results from a multi-scale thermohydrologic modeling study for two alternative thermal-operating modes for the potential repository system recently analyzed by the Yucca Mountain Project. These include a Higher-Temperature Operating Mode (HTOM), which results in a localized boiling zone around each emplacement drift, and a Lower-Temperature(More)
Gas loss from an aquifer gas-storage reservoir can occur through a number of potential pathways, including faults, an incomplete caprock seal, or boreholes. In this paper, we develop a 3-D gas migration model built on a realistic site-specific hydrogeologic model of the aquifer gas-storage reservoir at the Leroy natural gas-storage facility, which(More)
  • 1