Thomas A Barber

Learn More
As typical anchorage-dependent cells myocytes must balance contractility against adequate adhesion. Skeletal myotubes grown as isolated strips from myoblasts on micropatterned glass exhibited spontaneous peeling after one end of the myotube was mechanically detached. Such results indicate the development of a prestress in the cells. To assess this prestress(More)
The United States Pharmacopeia (USP) has proposed a new Chapter <729> entitled 'Globule Size Distribution in Intravenous Emulsions' that is intended to identify methods for analyzing the stability of lipid emulsions. We studied the differences between particle-sizing instruments when analyzing the physicochemical stability of a parenteral nutrition mixture(More)
Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) (p(AAm-co-EG/AAc) applied to model surfaces prevent protein adsorption and cell adhesion. Subsequently, IPN surfaces functionalized with the RGD cell-binding domain from rat bone sialoprotein (BSP) modulated bone cell adhesion, proliferation, and matrix(More)
Interpenetrating polymer networks (IPNs) of poly (acrylamide-co-ethylene glycol/acrylic acid) functionalized with an -Arg-Gly-Asp- (RGD) containing 15 amino acid peptides, derived from rat bone sialoprotein (bsp-RGD(15), were grafted to titanium implants in an effort to modulate bone formation in the peri-implant region in the rat femoral ablation model.(More)
The composition of polyester polyols derived from terephthalic acid (TPA) and diethylene glycol (DEG) was examined. The synthesis of individual oligomers 1,n is described. The compounds were characterized with H and C NMR, mass spectrometry, and elemental analyses. The resonance signals arising from aromatic protons in 1,n 1–3 were identified in H NMR(More)
The ability of monocytes to adhere, differentiate into macrophages, and fuse to form foreign body giant cells (FBGCs) on an implanted material surface is a critical step toward biomaterial degradation. Novel homogeneous surfaces were utilized to mediate adhesion. These surfaces consisted of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane (EDS) and an(More)
Sequential Robust Design experiments and X-ray photoelectron spectroscopic (XPS) studies were performed to examine the immobilization of hyaluronic acid (HA) on glass substrates chemisorbed with N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS). Numerous reaction conditions were investigated, including the concentrations of(More)
Short-term osseointegration of orthopedic implants is critical for the long-term stability of the implant-bone interface. To improve initial implant stability, one strategy under consideration involves the presentation of adhesion ligands on the implant surface to stimulate bone regeneration in the peri-implant region. To assess the relative effects of(More)
Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) [p(AAm-co-EG/AAc)] functionalized with an -Arg-Gly-Asp- containing peptide derived from rat bone sialoprotein [bsp-RGD(15)] were grafted to titanium implants in an effort to modulate osteoblast behavior in vitro. Surface characterization data were consistent with(More)
A simple fluorescence based characterization method was developed to assess ligand density on peptide-modified biomaterials. The method exploits the exquisite sensitivity of proteolysis for the purpose of liberating a fluorescently labeled probe fragment from an immobilized peptide. The released fragment can then be detected in solution using(More)
  • 1