Learn More
The conductivity of the human skull was measured both in vitro and in vivo. The in vitro measurement was performed on a sample of fresh skull placed within a saline environment. For the in vivo measurement a small current was passed through the head by means of two electrodes placed on the scalp. The potential distribution thus generated on the scalp was(More)
Holes in the skull may have a large influence on the EEG and ERP. Inverse source modeling techniques such as dipole fitting require an accurate volume conductor model. This model should incorporate holes if present, especially when either a neuronal generator or the electrodes are close to the hole, e.g., in case of a trephine hole in the upper part of the(More)
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially.(More)
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce long-lasting changes in cortical excitability that can benefit cognitive functioning and clinical treatment. In order to both better understand the mechanisms behind tDCS and possibly improve the technique, finite element models are used to simulate(More)
The sequences of activation and recovery of the heart have physiological and clinical relevance. We report on progress made over the last years in the method that images these timings based on an equivalent double layer on the myocardial surface serving as the equivalent source of cardiac activity, with local transmembrane potentials (TMP) acting as their(More)
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration(More)
In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer approximations. We simulated direct current stimulation for a range(More)
Radiofrequency catheter ablation (RCA) procedures for treating ventricular arrhythmias have evolved significantly over the past several years; however, the use of RCA has been limited due to the difficulty in identifying the appropriate site for ablation. In this study, we investigate the accuracy of a computer algorithm to guide the tip of an ablation(More)
A method to estimate the potential and current density distribution during transcranial DC stimulation (tDCS) is introduced. The volume conductor model consists of a realistic head model (concerning shape as well as conductivity), obtained from TI-, PD- and DT-MR images. The model includes five compartments with different conductivities. For the skull and(More)
The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject’s head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the relationship between the coil orientation and the direction of the(More)