Thirumananseri Kumarevel

Learn More
Expression of Oct3/4, Sox2, Klf4, and c-Myc (OSKM) can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Somatic cell nuclear transfer (SCNT) can also be used for reprogramming, suggesting that factors present in oocytes could potentially augment OSKM-mediated induction of pluripotency. Here, we report that two histone variants, TH2A and(More)
The multi-subunit DNA-dependent RNA polymerase (RNAP) is the principal enzyme of transcription for gene expression. Transcription is regulated by various transcription factors. Gre factor homologue 1 (Gfh1), found in the Thermus genus, is a close homologue of the well-conserved bacterial transcription factor GreA, and inhibits transcription initiation and(More)
DNA binding proteins are essential in all organisms, and they play important roles in both compacting and regulating the genetic material. All thermophilic and hyperthermophilic archaea encode one or more copies of Alba or Sso10b, which is a small, abundant, basic protein that binds DNA. Here, we present the crystal structure of Ape10b2 from Aeropyrum(More)
Genome analyses have revealed that members of the Lrp/AsnC family of transcriptional regulators are widely distributed among prokaryotes, including both bacteria and archaea. These regulatory proteins are involved in cellular metabolism in both global and specific manners, depending on the availability of the exogenous amino acid effectors. Here we report(More)
The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report(More)
ST1710, a member of the multiple antibiotic resistance regulator (MarR) family of regulatory proteins in bacteria and archaea, plays important roles in development of antibiotic resistance, a global health problem. Here, we present the crystal structure of ST1710 from Sulfolobus tokodaii strain 7 complexed with salicylate, a well-known inhibitor of MarR(More)
The emergence of bacterial resistance to multiple drugs poses a serious and growing health concern. Understanding and deciphering the mechanisms of these multiple drug resistance regulatory proteins through structural or biochemical means is an important endeavor. Here, we present the crystal structure of ST1710 from Sulfolobus tokodaii strain 7 in two(More)
HutP is an RNA binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus species by binding to cis-acting regulatory sequences on hut mRNA. We recently solved the HutP crystal structure, which revealed a novel fold where three dimers are arranged in a 3-fold axis to form the hexamer. We also identified a minimal RNA(More)
HutP regulates the expression of the hut structural genes of Bacillus subtilis by an anti-termination mechanism and requires two components, Mg2+ ions and L-histidine. HutP recognizes three UAG triplet units, separated by four non-conserved nucleotides on the terminator region. Here we report the 1.60-A resolution crystal structure of the quaternary complex(More)
The maturation of [NiFe]-hydrogenases is a catalyzed process involving the activities of at least seven proteins. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit, after the [NiFe]-metal center has been assembled. The HycI endopeptidase is involved in the C-terminal processing of HycE, the large subunit of(More)