Thiruganesh Ramasamy

Learn More
The aim of this study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of a lipid lowering agent, fenofibrate (FEN). FEN-loaded NLCs (FEN-NLCs) were prepared by hot homogenization followed by an ultrasonication method using Compritol 888 ATO as a solid lipid, Labrafil M 1944CS as a liquid lipid,(More)
To investigate the effect of polyelectrolytes on the formation and physicochemical properties of chitosan nanoparticles (CS-NPs) used for the delivery of an anticancer drug, doxorubicin (DOX). Three DOX-loaded CS-NPs were formulated with tripolyphosphate (CS-TP/DOX NPs), dextran sulfate (CS-DS/DOX NPs), and hyaluronic acid (CS-HA/DOX NPs) by using(More)
Polyelectrolyte multilayers created via sequential adsorption of complimentary materials may be useful in the delivery of small molecules such as anti-cancer drugs. In this study, layer-by-layer (LbL) nanoarchitectures were prepared by step-wise deposition of naturally derived chitosan and hyaluronic acid on negatively charged hybrid solid lipid(More)
The main aim of this study was to improve the oral bioavailability of raloxifene (RXF), a selective estrogen receptor modulator, by incorporation into solid lipid nanoparticles (SLN). RXF-loaded SLN was prepared by homogenization-sonication technique and characterized through physicochemical, pharmacokinetic, and cytotoxicity studies. The optimized SLN(More)
To investigate whether delivery of a histone deacetylase inhibitor, vorinostat (VOR), by using solid lipid nanoparticles (SLNs) enhanced its bioavailability and effects on multidrug-resistant cancer cells. VOR-loaded SLNs (VOR-SLNs) were prepared by hot homogenization using an emulsification-sonication technique, and the formulation parameters were(More)
Combination of two or more drugs has emerged as a promising strategy to elicit synergistic therapeutic responses that can overcome multidrug resistance of cancer cells at various stages of the growth cycle. In the current study, we investigated the efficacy of two drugs, mitoxantrone (MTX) and doxorubicin (DOX), co-encapsulated in a polyethylene(More)
In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these(More)
The attachment of polyethylene glycol (PEG) increases the circulation time of drug-containing nanoparticles; however, this also negatively affects cellular uptake. To overcome this problem, unique lipid polymer hybrid (LPH) nanoparticles were developed with a pH-responsive PEG layer that detached prior to cell uptake. Docetaxel (DTX) was incorporated into(More)
The main purpose of this study was to investigate the potential of self-nano-emulsifying drug delivery system (SNEDDS) in improving the bioavailability of docetaxel (DCT) and its chemotherapeutic effect. The DCT-loaded SNEDDS was prepared by employing rational blends of capryol 90, labrasol, and transcutol HP using ternary phase diagram. The liquid(More)
Cancer remains a leading cause of death. A combination of anticancer agents can effectively kill cancer through multiple pathways; however, improvements to their delivery are needed. Hence, docetaxel and cisplatin-loaded liquid crystalline nanoparticles with folic acid were prepared for effective and targeted anticancer therapy. Notably,(More)