Learn More
Notch 1, Notch 2, and Notch 3 are three highly conserved mammalian homologues of the Drosophila Notch gene, which encodes a transmembrane protein important for various cell fate decisions during development. Little is yet known about regulation of mammalian Notch gene expression, and this issue has been addressed in the developing rodent tooth during normal(More)
The mouse Otlx2 gene is a new member of the paired-like family of homeobox genes whose human homologue, RIEG, is involved in Rieger syndrome, an autosomal-dominant disorder. One of the cardinal features of Rieger syndrome is dental hypoplasia, indicating that Otlx2/RIEG activity is essential for normal tooth development. Here, we analyzed the expression of(More)
Serrate-like genes encode transmembrane ligands to Notch receptors and control cell fate decisions during development. In this report, we analyse the regulation of the mouse Serrate-1 gene during embryogenesis. The Serrate-1 gene is expressed from embryonic day 7.5 (E7.5) and expression is often observed at sites of epithelial-mesenchymal interactions,(More)
Numerous stem cell niches are present in the different tissues and organs of the adult human body. Among these tissues, dental pulp, entrapped within the 'sealed niche' of the pulp chamber, is an extremely rich site for collecting stem cells. In this study, we demonstrate that the isolation of human dental pulp stem cells by the explants culture method(More)
Nerve growth factor (NGF) is a well established target-derived trophic factor supporting sympathetic and sensory innervation in the peripheral tissues as well as cholinergic innervation in the brain. Despite its name, NGF may have broader biological functions early in development in a wide range of non-neuronal differentiating cells. The many effects of NGF(More)
The mammalian dentition is composed of serial groups of teeth, each with a distinctive crown and root morphology, highly adapted to its particular masticatory function. In the embryo, generation of individual teeth within the jaws relies upon interactions between ectoderm of the first branchial arch and the neural crest-derived ectomesenchymal cells that(More)
Nerve growth factor (NGF), a target-derived neurotrophic substance, may have broader biological functions in various types of non-neuronal differentiating cells. The effects of NGF are dependent on initial binding of NGF to specific cell-surface receptors (p75NGFR and p140prototrk) on responsive cells. The continuously growing rat incisor offers an(More)
Neurotrophins (NTFs) are a family of structurally related proteins with specific effects on the developing nervous system and a wide range of non-neuronal differentiating cells. To date, four NTFs have been characterized: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). To perform their(More)
The developing tooth represents a suitable model for understanding the molecular mechanisms involved in induction, morphogenesis and differentiation of organs. It is conceivable that the developmental changes could be reflected in the distribution of different cytoskeletal components and in this report we analyze the expression of the intermediate filament(More)
Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube(More)