Learn More
PTEN (Phosphatase and tensin homolog deleted on chromosome 10) expression in stromal fibroblasts suppresses epithelial mammary tumours, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the(More)
The evolutionarily ancient arm of the E2f family of transcription factors consisting of the two atypical members E2f7 and E2f8 is essential for murine embryonic development. However, the critical tissues, cellular processes, and molecular pathways regulated by these two factors remain unknown. Using a series of fetal and placental lineage-specific cre mice,(More)
BACKGROUND AND OBJECTIVE Biomarkers for subtyping triple negative breast cancer (TNBC) are needed given the absence of responsive therapy and relatively poor prediction of survival. Morphology of cancer tissues is widely used in clinical practice for stratifying cancer patients, while genomic data are highly effective to classify cancer patients into(More)
The endocycle is a variant cell cycle consisting of successive DNA synthesis and gap phases that yield highly polyploid cells. Although essential for metazoan development, relatively little is known about its control or physiologic role in mammals. Using lineage-specific cre mice we identified two opposing arms of the E2F program, one driven by canonical(More)
Polymerized actin-based cytoskeletal structures provide the cells with shape, resilience and dynamics. A mechanistic understanding of actin-based structures is crucial for finding solutions to practical problems occurring in tissue engineering constructs that require the interaction of cells with materials. In this regard, the first step is to detect and(More)
Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and(More)
Robust mechanisms to control cell proliferation have evolved to maintain the integrity of organ architecture. Here, we investigated how two critical proliferative pathways, Myc and E2f, are integrated to control cell cycles in normal and Rb-deficient cells using a murine intestinal model. We show that Myc and E2f1-3 have little impact on normal G1-S(More)
Green Fluorescent Protein (GFP)-tagging and time-lapse flu-orescence microscopy enable to observe molecular dynamics and interactions in live cells. Original image analysis methods are then required to process challenging 2D or 3D image sequences. To address the tracking problem of several hundreds of objects, we propose an original framework that provides(More)
The Rb-E2F axis is an important pathway involved in cell-cycle control that is deregulated in a number of cancers. E2f transcription factors have distinct roles in the control of cell proliferation, cell survival and differentiation in a variety of tissues. We have previously shown that E2fs are important downstream targets of a CSF-1 signaling cascade(More)