Learn More
BACKGROUND In the emerging field of environmental genomics, direct cloning and sequencing of genomic fragments from complex microbial communities has proven to be a valuable source of new enzymes, expanding the knowledge of basic biological processes. The central problem of this so called metagenome-approach is that the cloned fragments often lack suitable(More)
Magnetotactic bacteria (MTB) are a heterogeneous group of aquatic prokaryotes with a unique intracellular organelle, the magnetosome, which orients the cell along magnetic field lines. Magnetotaxis is a complex phenotype, which depends on the coordinate synthesis of magnetosomes and the ability to swim and orient along the direction caused by the(More)
In recent years, the planctomycetes have been recognized as a phylum of environmentally important bacteria with habitats ranging from soil and freshwater to marine ecosystems. The planctomycetes form an independent phylum within the bacterial domain, whose exact phylogenetic position remains controversial. With the completion of sequencing of the genome of(More)
BACKGROUND Current sequencing technologies give access to sequence information for genomes and metagenomes at a tremendous speed. Subsequent data processing is mainly performed by automatic pipelines provided by the sequencing centers. Although, standardised workflows are desirable and useful in many respects, rational data mining, comparative genomics, and(More)
Marine microbial genomics and metagenomics is an emerging field in environmental research. Since the completion of the first marine bacterial genome in 2003, the number of fully sequenced marine bacteria has grown rapidly. Concurrently, marine metagenomics studies are performed on a regular basis, and the resulting number of sequences is growing(More)
Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive and non-redundant resource of expert-curated biochemical reactions described using species from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Rhea has been designed for the functional annotation of enzymes and the description of genome-scale metabolic networks, providing(More)
The dissimilatory reduction of sulfate is an ancient metabolic process central to today's biogeochemical cycling of sulfur and carbon in marine sediments. Until now its polyphyletic distribution was most parsimoniously explained by multiple horizontal transfers of single genes rather than by a not-yet-identified "metabolic island." Here we provide evidence(More)
BACKGROUND Marine ecological genomics can be defined as the application of genomic sciences to understand the structure and function of marine ecosystems. In this field of research, the analysis of genomes and metagenomes of environmental relevance must take into account the corresponding habitat (contextual) data, e.g. water depth, physical and chemical(More)
BACKGROUND Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities alone. Extending similarity searches with gene pattern(More)
Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of expert-curated biochemical reactions designed for the functional annotation of enzymes and the description of metabolic networks. Rhea describes enzyme-catalyzed reactions covering the IUBMB Enzyme Nomenclature list as well as additional reactions, including spontaneously(More)