Learn More
We study the near-field probing of the slow Bloch laser mode of a photonic crystal by a bowtie nano-aperture (BNA) positioned at the end of a metal-coated fiber probe. We show that the BNA acts as a polarizing nanoprobe allowing us to extract information about the polarization of the near-field of the slow-light mode, without causing any significant(More)
In this paper are reported the results concerning the experimental study of the interaction between the vectorial amplitude of an optical field and imaging systems. It is shown that far-field as well as near-field imaging systems beside their spatial frequency filtering ability, also act as polarization filters playing a determinant role on the image(More)
In this Letter, we introduce a new nanoantenna concept aimed at generating a single magnetic hot spot in the optical frequency range, thus confining and enhancing the magnetic optical field on the background of a much lower electric field. This nanoantenna, designed by applying Babinet's principle to the bowtie nanoaperture, takes the shape of a diabolo. It(More)
In the previous NFO meeting, we proposed the use of confined evanescent light beams as 'virtual' or 'immaterial' tips. Unfortunately, this technique was hindered by the need for perfectly radially polarized light beams. In this communication, we propose a simple, stable and cheap method allowing the generation of beams of any polarization and more(More)
We report a simple method for generating microaxicons at the extremity of commercial optical fibers. The proposed solution, based on a polishing technique, can readily produce any desired microaxicon cone angle and is independent of the nature of the fiber. An optical study of microaxicon performance, in terms of confinement ability and length of the(More)
We propose a method for producing a conical beam based on the lateral refraction of the TM(01) mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors(More)
We propose a concept of near-field imaging for the complete experimental description of the structure of light in three dimensions around nanodevices. It is based on a near-field microscope able to simultaneously map the distributions of two orthogonal electric-field components at the sample surface. From a single 2D acquisition of these two components, the(More)
This paper addresses a passive system capable of converting a linearly polarized THz beam into a radially polarized one. This is obtained by extending to THz frequencies and waveguides an already proven concept based on mode selection in optical fibers. The approach is validated at 0.1 THz owing to the realization of a prototype involving a circular(More)