Thierry Desnos

Learn More
The Arabidopsis thaliana hypocotyl is widely used to study the effects of light and plant growth factors on cell elongation. To provide a framework for the molecular-genetic analysis of cell elongation in this organ, here we describe, at the cellular level, its morphology and growth and identify a number of characteristic, developmental differences between(More)
Plant roots are able to sense soil nutrient availability. In order to acquire heterogeneously distributed water and minerals, they optimize their root architecture. One poorly understood plant response to soil phosphate (P(i)) deficiency is a reduction in primary root growth with an increase in the number and length of lateral roots. Here we show that(More)
Mutants at the PROCUSTE1 (PRC1) locus show decreased cell elongation, specifically in roots and dark-grown hypocotyls. Cell elongation defects are correlated with a cellulose deficiency and the presence of gapped walls. Map-based cloning of PRC1 reveals that it encodes a member (CesA6) of the cellulose synthase catalytic subunit family, of which at least(More)
BACKGROUND A major challenge is to understand how the walls of expanding plant cells are correctly assembled and remodeled, often in the presence of wall-degrading micro-organisms. Plant cells, like yeast, react to cell-wall perturbations as shown by changes in gene expression, accumulation of ectopic lignin, and growth arrest caused by the inhibition of(More)
TOR (target of rapamycin) protein kinases were identified in yeasts, mammals, and Drosophila as central controllers of cell growth in response to nutrient and growth factors. Here we show that Arabidopsis thaliana possesses a single TOR gene encoding a protein able to complex with yeast 12-kDa FK506-binding protein and rapamycin despite the insensitivity of(More)
Isoxaben is a pre-emergence herbicide that inhibits cellulose biosynthesis in higher plants. Two loci identified by isoxaben-resistant mutants (ixr1-1, ixr1-2, and ixr2-1) in Arabidopsis have been reported previously. IXR1 was recently shown to encode the cellulose synthase catalytic subunit CESA3 (W.-R. Scheible, R. Eshed, T. Richmond, D. Delmer, and C.(More)
Mutants at the BOTERO1 locus are affected in anisotropic growth in all non-tip-growing cell types examined. Mutant cells are shorter and broader than those of the wild type. Mutant inflorescence stems show a dramatically reduced bending modulus and maximum stress at yield. Our observations of root epidermis cells show that the cell expansion defect in bot1(More)
One of the responses of plants to low sources of external phosphorus (P) is to modify root architecture. In Arabidopsis thaliana plantlets grown on low P, the primary root length (PRL) is reduced whereas lateral root growth is promoted. By using the Bay-0 x Shahdara recombinant inbred line (RIL) population, we have mapped three quantitative trait loci (QTL)(More)
Plant morphogenesis is profoundly influenced by light (a phenomenon known as photomorphogenesis). For example, light inhibits seedling hypocotyl growth via activation of phytochromes and additional photoreceptors. Subsequently, information is transmitted through photoreceptor-linked signal transduction pathways and used (via previously unknown mechanisms)(More)
Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that PHOSPHATE DEFICIENCY(More)