Thierry Charitat

Learn More
Progress in the determination of structure and fluctuation spectrum of a floating bilayer system, as well as potential applications for biological studies, is reviewed. The system described here was first introduced by Charitat et al. (Eur Phys J B 8:583–593, 1999) and consists of a planar bilayer floating at 2–3 nm away from an adsorbed one on a solid(More)
Understanding interactions between membranes requires measurements on well-controlled systems close to natural conditions, in which fluctuations play an important role. We have determined, by grazing incidence X-ray scattering, the interaction potential between two lipid bilayers, one adsorbed on a solid surface and the other floating close by. We find that(More)
Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding(More)
The effect of ac electric fields on the elasticity of supported lipid bilayers is investigated at the microscopic level using grazing incidence synchrotron x-ray scattering. A strong decrease in the membrane tension up to 1  mN/m and a dramatic increase of its effective rigidity up to 300  k_{B}T are observed for local electric potentials seen by the(More)
  • 1