Thierry Brotin

Learn More
Cryptophanes bearing OCH(2)COOH groups in place of the methoxy groups represent a new class of xenon-carrier molecules soluble in water at biological pH. By using (1)H and (129)Xe NMR (thermally- and laser-polarized dissolved gas), the structural and dynamical behaviors of these host molecules as well as their interaction with xenon are studied. They are(More)
6. Binding Properties of Cryptophanes 105 6.1. Complexation of Small Neutral Molecules 106 6.2. Complexation of Ammonium Guests 107 6.3. Complexation of Metal Cations 109 6.4. Complexation of Anion Guests 109 7. Dynamics of the Guest in the Cryptophane Cavity 109 7.1. Investigations by NMR Spectroscopy 109 7.2. Computational Investigations 111 7.3.(More)
For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell(More)
Hyperpolarized 129Xe NMR spectroscopy can detect the presence of specific low-concentration biomolecular analytes by means of a xenon biosensor that consists of a water-soluble, targeted cryptophane-A cage that encapsulates the xenon. In this work, we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular(More)
The interaction of xenon with cryptophane derivatives is analyzed by NMR by using either thermal or hyperpolarized noble gas. Twelve hosts differing by their stereochemistry, cavity size, and the nature and the number of the substituents on the aromatic rings have been included in the study, in the aim of extracting some clues for the optimization of(More)
The reversible trapping of small hydrocarbons and other gases by cryptophane-111 (1) in organic solution was characterized with variable-temperature (1)H NMR spectroscopy. Characteristic spectral changes observed upon guest binding allowed kinetic and thermodynamic data to be readily extracted, permitting quantification and comparison of different(More)
Raman optical activity (ROA) and density functional theory (DFT) calculations were used to determine the absolute configuration of enantiopure cryptophane molecules and to obtain conformational information about their three ethylenedioxy linkers. ROA spectra recorded in chloroform solution for the two resolved enantiomers of cryptophanes derivatives bearing(More)