Learn More
—Consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform splines, and piecewise polynomials. Even though these signals are not bandlimited, we show that they(More)
This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights. We then minimize an estimate of the mean square error between the clean image and the denoised(More)
—Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, nonuniform splines or piecewise polynomials, and call the number of degrees of freedom per unit of time the rate of innovation. Classical sampling theory does not enable a perfect reconstruction of(More)
We consider the problem of optimizing the parameters of a given denoising algorithm for restoration of a signal corrupted by white Gaussian noise. To achieve this, we propose to minimize Stein's unbiased risk estimate (SURE) which provides a means of assessing the true mean-squared error (MSE) purely from the measured data without need for any knowledge(More)
S ignal acquisition and reconstruction is at the heart of signal processing, and sampling theorems provide the bridge between the continuous and the discrete time worlds. The most celebrated and widely used sampling theorem is often attributed to Shannon (and many others, from Whittaker to Kotel'nikov and Nyquist, to name a few) and gives a sufficient(More)
We consider the problem of interpolating a signal using a linear combination of shifted versions of a compactly-supported basis function phi(x). We first give the expression for the cases of phi's that have minimal support for a given accuracy (also known as "approximation order"). This class of functions, which we call maximal-order-minimal-support(More)
We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared(More)