#### Filter Results:

#### Publication Year

1993

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

—Consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform splines, and piecewise polynomials. Even though these signals are not bandlimited, we show that they… (More)

We consider the problem of optimizing the parameters of a given denoising algorithm for restoration of a signal corrupted by white Gaussian noise. To achieve this, we propose to minimize Stein's unbiased risk estimate (SURE) which provides a means of assessing the true mean-squared error (MSE) purely from the measured data without need for any knowledge… (More)

We propose a new approach to image denoising, based on the image-domain minimization of an estimate of the mean squared error--Stein's unbiased risk estimate (SURE). Unlike most existing denoising algorithms, using the SURE makes it needless to hypothesize a statistical model for the noiseless image. A key point of our approach is that, although the… (More)

This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights. We then minimize an estimate of the mean square error between the clean image and the denoised… (More)

—Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, nonuniform splines or piecewise polynomials, and call the number of degrees of freedom per unit of time the rate of innovation. Classical sampling theory does not enable a perfect reconstruction of… (More)

S ignal acquisition and reconstruction is at the heart of signal processing, and sampling theorems provide the bridge between the continuous and the discrete time worlds. The most celebrated and widely used sampling theorem is often attributed to Shannon (and many others, from Whittaker to Kotel'nikov and Nyquist, to name a few) and gives a sufficient… (More)

We consider the problem of interpolating a signal using a linear combination of shifted versions of a compactly-supported basis function phi(x). We first give the expression for the cases of phi's that have minimal support for a given accuracy (also known as "approximation order"). This class of functions, which we call maximal-order-minimal-support… (More)

Based on the theory of approximation, this paper presents a unified analysis of interpolation and resampling techniques. An important issue is the choice of adequate basis functions. We show that, contrary to the common belief, those that perform best are not interpolating. By opposition to traditional interpolation, we call their use generalized… (More)

- Thierry Blu, Michael Unser
- 1999

— We present a general Fourier-based method that provides an accurate prediction of the approximation error as a function of the sampling step T. Our formalism applies to an extended class of convolution-based signal approximation techniques, which includes interpolation, generalized sampling with prefiltering, and the projectors encountered in wavelet… (More)

- Thierry Blu, Michael Unser
- 1999

We investigate the approximation properties of general polynomial preserving operators that approximate a function into some scaled subspace of L 2 via an appropriate sequence of inner products. In particular, we consider integer shift-invariant approximations such as those provided by splines and wavelets, as well as finite elements and multi-wavelets… (More)