Learn More
Twist1 and Twist2 are major regulators of embryogenesis. Twist1 has been shown to favor the metastatic dissemination of cancer cells through its ability to induce an epithelial-mesenchymal transition (EMT). Here, we show that a large fraction of human cancers overexpress Twist1 and/or Twist2. Both proteins override oncogene-induced premature senescence by(More)
We have reported previously the physical interaction of B-cell translocation gene proteins (BTG)1 and BTG2 with the mouse protein CAF1 (CCR4-associated factor 1) and suggested that these proteins may participate, through their association with CAF1, in transcription regulation. Here we describe the in vitro and in vivo association of these proteins with(More)
BTG1 and BTG2 belong to a family of functionally related genes involved in the control of the cell cycle. As part of an ongoing attempt to understand their biological functions, we used a yeast two-hybrid screening to look for possible functional partners of Btg1 and Btg2. Here we report the physical and functional association between these proteins and the(More)
Hormone therapy is often used in association with chemotherapy in the treatment of estrogen-responsive breast cancers. By using breast adenocarcinoma cell lines, we show that antiestrogen treatment leads to a dramatic decrease of p53 protein levels. This effect leads to a loss of wild-type p53 response to genotoxic treatment. This inhibition is assessed by(More)
The major components of the mammary ductal tree are an inner layer of luminal cells, an outer layer of myoepithelial cells, and a basement membrane that separates the ducts from the underlying stroma. Cells in the outer layer express CD10, a zinc-dependent metalloprotease that regulates the growth of the ductal tree during mammary gland development. To(More)
The mechanisms of resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) often remain obscure. Analysis of patient samples during disease progression revealed the up-regulation of the oncogene TWIST-1, also measured in primary samples from TKI-resistant patients. Moreover, we found that TWIST-1 was overexpressed in CML diagnostic(More)
Leukemic stem cells in chronic phase chronic myelogenous leukemia (CP-CML) are responsible for disease persistence and eventual drug resistance, most likely because they survive, expand, and are sustained through interactions with their microenvironment. Bone morphogenetic proteins 2 (BMP2) and 4 (BMP4) regulate the fate and proliferation of normal(More)
Antibodies were elicited against a synthetic peptide which encompassed two different regions of the human lutropin beta-subunit (hLH-beta). These antibodies were raised against either the peptide which was assembled using a conventional approach and conjugated to the tetanus toxoid, or with the peptide assembled using the multiple antigen peptide system(More)
Understanding the mechanisms of cancer initiation will help to prevent and manage the disease. At present, the role of the breast microenvironment in transformation remains unknown. As BMP2 and BMP4 are important regulators of stem cells and their niches in many tissues, we investigated their function in early phases of breast cancer. BMP2 production by(More)
The ΔNp63 protein, a product of the TP63 gene that lacks the N-terminal domain, has a critical role in the maintenance of self renewal and progenitor capacity in several types of epithelial tissues. ΔNp63 is frequently overexpressed in squamous cell carcinoma (SCC) and in some other epithelial tumours. This overexpression may contribute to tumour(More)