Thiago Menegotto

  • Citations Per Year
Learn More
Dip-coated films, which are widely used in the coating industry, are usually measured by capacitive methods with micrometric precision. For the first time to our knowledge, we have applied an interferometric determination of the evolution of thickness in real time to nonvolatile Newtonian mineral oils with several viscosities and distinct dip withdrawing(More)
Normal incidence transmittance and reflectance spectra of sputtered nanocomposite monolayer films of Ag in SiO2, buried and unburied, showed significant redshifted plasmon resonances from 410 to 455 nm, which could be well interpreted with a simple model that starts from the Maxwell Garnett theory and the Kreibig extension of the Drude-Lorentz equation, but(More)
A brief overview of optical monitoring for vacuum and wet-bench film-deposition processes is presented. Interferometric and polarimetric measurements are combined with regard to simultaneous monitoring of refractive index and physical thickness in real time. Monitoring stability and accuracy are verified during dip coating with a transparent oil standard.(More)
Real-time interferometric monitoring of the dip coating process is applied to the study of properties of flowing liquids. Nonvolatile Newtonian oils are considered, allowing validity of a simple model after the steady state is reached where film physical thickness depends on time as t(-1/2). Measurement of two distinct mineral oil standards, under several(More)
Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute(More)
  • 1