Thiago C. Genaro-Mattos

Learn More
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number(More)
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary(More)
BACKGROUND The 2-deoxyribose (2-DR) degradation assay is a widely used test for determining anti/pro-oxidant properties of molecules and plant extracts. Most reports use reaction blanks omitting 2-DR or thiobarbituric acid (TBA). However, when studying Fe(II)-mediated reactions, we verified that these blanks are not appropriate. Fe(III)--a product of these(More)
Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other(More)
Lipid modifications aid in regulating (and misregulating) protein function and localization. However, efficient methods to screen for a lipid's ability to modify proteins are not readily available. We present a strategy to identify protein-reactive lipids and apply it to a neurodevelopmental disorder, Smith-Lemli-Opitz syndrome (SLOS). Alkynyl surrogates(More)
The formation of lipid electrophile-protein adducts is associated with many disorders that involve perturbations of cellular redox status. The identities of adducted proteins and the effects of adduction on protein function are mostly unknown and an increased understanding of these factors may help to define the pathogenesis of various human disorders(More)
Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3beta-hydroxy-5beta-hydroxy-B-norcholestane-6beta-carboxyaldehyde (1a) and 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These(More)
Mitochondrial cholesterol has been reported to be increased under specific pathological conditions associated with enhanced oxidative stress parameters. In this scenario, cholesterol oxidation would be increased, leading to the production of reactive aldehydes, including cholesterol carboxyaldehyde (ChAld). By using SDS micelles as a mitochondrial mimetic(More)
Lipid peroxidation is a well-known process that has been implicated in many diseases. Recent evidence has shown that mitochondrial cholesterol levels are increased under specific conditions, making it an important target for peroxidation inside the mitochondria. Cholesterol peroxidation generates, as primary products, several hydroperoxides (ChOOH), which(More)