Learn More
A massive neuronal loss during early postnatal development has been well documented in the murine cerebral cortex, but the factors that drive cells into apoptosis are largely unknown. The role of neuronal activity in developmental apoptosis was studied in organotypic neocortical slice cultures of newborn mice. Multielectrode array and whole-cell patch-clamp(More)
Radial neuronal migration in the cerebral cortex depends on trophic factors and the activation of different voltage- and ligand-gated channels. To examine the functional role of GABA(C) receptors in radial migration we analyzed the effects of specific GABA(A) and GABA(C) receptor antagonists on the migration of BrdU-labeled neurons in vitro using(More)
Epilepsy is one of the most common chronic neurologic diseases, yet approximately one-third of affected patients do not respond to anticonvulsive drugs that target neurons or neuronal circuits. Reactive astrocytes are commonly found in putative epileptic foci and have been hypothesized to be disease contributors because they lose essential homeostatic(More)
Amyloid precursor protein (APP) mis-processing and aberrant tau hyperphosphorylation are causally related to the pathogenesis and neurodegenerative processes that characterize Alzheimer's disease (AD). Abnormal APP metabolism leads to the generation of neurotoxic amyloid beta (Abeta), whereas tau hyperphosphorylation culminates in cytoskeletal disturbances,(More)
Studies into the mechanisms of corticosteroid action continue to be a rich bed of research, spanning the fields of neuroscience and endocrinology through to immunology and metabolism. However, the vast literature generated, in particular with respect to corticosteroid actions in the brain, tends to be contentious, with some aspects suffering from loose(More)
We present a technique which combines two methods in order to measure the series resistance (R S) during whole-cell patch-clamp recordings from excitable and non-excitable cells. R S is determined in the amplifier’s current-clamp mode by means of an active bridge circuit. The correct neutralization of the electrode capacitance and the adjustment of the(More)
Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate(More)
  • 1