Learn More
Novel motor skills are learned through repetitive practice and, once acquired, persist long after training stops. Earlier studies have shown that such learning induces an increase in the efficacy of synapses in the primary motor cortex, the persistence of which is associated with retention of the task. However, how motor learning affects neuronal circuitry(More)
To assess behavioral experience effects on synaptic plasticity after brain damage, the present study examined the effects of complex motor skills training (the acrobatic task) on synaptic changes in layer V of the motor cortex opposite unilateral damage to the forelimb sensorimotor cortex (FLsmc). Adult male rats were given lesions or sham operations(More)
PURPOSE This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. METHOD Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the(More)
Unilateral damage to the forelimb representation area of the sensorimotor cortex in adult rats increases dendritic arborization of layer V pyramidal neurons of the contralateral homotopic cortex. Arbor size was maximum at approximately 18 d postlesion, following which there was a partial elimination, or pruning, of dendritic processes. These neural changes(More)
Unilateral lesions to the forelimb representation (FL) area of the rat sensorimotor cortex caused a time-dependent increase in the dendritic arborization of layer V pyramidal neurons in the contralateral homotopic cortex. The increase in arborization was maximum at 2-3 weeks after the lesion, following which there was a partial reduction in dendritic(More)
Complex motor skill learning, but not mere motor activity, leads to an increase in synapse number within the cerebellar cortex. The present experiment used quantitative electron microscopy to determine which synapse types were altered in number. Adult female rats were allocated to either an acrobatic condition (AC), a voluntary exercise condition (VX), or(More)
Unilateral damage to the forelimb region of the sensorimotor cortex (FLsmc) in adult rats has previously been found to result in dendritic growth and synaptogenesis in layer V of the contralateral motor cortex. The neuronal growth appears to be mediated in part by lesion-induced changes in the use of the forelimbs. Whether these neuronal changes involve(More)
Rats raised from weaning in a complex environment have an increased number of synapses per neuron in the visual cortex in comparison to animals housed in standard laboratory cages. Previous research has suggested that experience-dependent synaptic changes may be coordinated with changes in astrocytes. The present study used electron microscopy to examine(More)
In humans and other animals, sufficient unilateral damage to the sensorimotor cortex can cause impairments in the opposite forelimb and the development of a hyper-reliance on the nonimpaired limb. This hyper-reliance is adaptive to the extent that it contributes to functional compensation for lesion-induced impairments. We have found that unilateral lesions(More)
Recommendations from experts and recently established guidelines on how to improve the face and predictive validity of animal models of stroke have stressed the importance of using older animals and long-term behavioral-functional endpoints rather than relying almost exclusively on acute measures of infarct volume in young animals. The objective of the(More)