Theresa Jones

Learn More
Novel motor skills are learned through repetitive practice and, once acquired, persist long after training stops. Earlier studies have shown that such learning induces an increase in the efficacy of synapses in the primary motor cortex, the persistence of which is associated with retention of the task. However, how motor learning affects neuronal circuitry(More)
PURPOSE This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. METHOD Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the(More)
Unilateral lesions to the forelimb representation (FL) area of the rat sensorimotor cortex caused a time-dependent increase in the dendritic arborization of layer V pyramidal neurons in the contralateral homotopic cortex. The increase in arborization was maximum at 2-3 weeks after the lesion, following which there was a partial reduction in dendritic(More)
Unilateral damage to the forelimb representation area of the sensorimotor cortex in adult rats increases dendritic arborization of layer V pyramidal neurons of the contralateral homotopic cortex. Arbor size was maximum at approximately 18 d postlesion, following which there was a partial elimination, or pruning, of dendritic processes. These neural changes(More)
To assess behavioral experience effects on synaptic plasticity after brain damage, the present study examined the effects of complex motor skills training (the acrobatic task) on synaptic changes in layer V of the motor cortex opposite unilateral damage to the forelimb sensorimotor cortex (FLsmc). Adult male rats were given lesions or sham operations(More)
The organization of forelimb representation areas of the monkey, cat, and rat motor cortices has been studied in depth, but its characterization in the mouse lags far behind. We used intracortical microstimulation (ICMS) and cytoarchitectonics to characterize the general organization of the C57BL/6 mouse motor cortex, and the forelimb representation in more(More)
Complex motor skill learning, but not mere motor activity, leads to an increase in synapse number within the cerebellar cortex. The present experiment used quantitative electron microscopy to determine which synapse types were altered in number. Adult female rats were allocated to either an acrobatic condition (AC), a voluntary exercise condition (VX), or(More)
The behavioural impairments and subsequent recovery were studied in rats with circumscribed unilateral lesions in the somatic sensorimotor cortex (SMC). Lesions were made in the caudal forelimb region (CFL), the rostral forelimb region (RFL), the anteromedial cortex (AMC) or the hindlimb area. Rats with damage in the CFL produced a deficit in placing the(More)
Unilateral damage to the forelimb region of the sensorimotor cortex (FLsmc) in adult rats has previously been found to result in dendritic growth and synaptogenesis in layer V of the contralateral motor cortex. The neuronal growth appears to be mediated in part by lesion-induced changes in the use of the forelimbs. Whether these neuronal changes involve(More)
It is common following stroke to focus early rehabilitation efforts on developing compensatory use of the less-affected body side. Here we used a rat model of focal cortical infarct to examine how motor skill acquisition with the less-affected ("intact") forelimb influences sensorimotor function of the infarct-impaired forelimb and neural activity in(More)