Learn More
We tested the hypothesis that rapid eye movement (REM) sleep is important for complex associative learning by restricting rats from entering REM sleep for 4 h either immediately after training on an eight-box spatial task (0-4 REMr) or 4 h following training (4-8 REMr). Both groups of REM-restricted rats eventually reached the same overall performance level(More)
During sleep, the mammalian CNS undergoes widespread, synchronized slow-wave activity (SWA) that directly varies with previous waking duration (Borbély, 1982; Dijk et al., 1990). When sleep is restricted, an enhanced SWA response follows in the next sleep period. The enhancement of SWA is associated with improved cognitive performance (Huber et al., 2004),(More)
Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by(More)
We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming, dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming,(More)
We developed a novel method for assessing spatial learning that is compatible with the requirements of electrophysiological recording of multiple single neurons. The behavioral task utilized a rectangular track with 8 reward boxes of which a subset contained available food (bait). Errors were scored whenever the rat investigated a non-baited box location(More)
  • 1