Theodoros P. Zanos

Learn More
Single neurons carry out important sensory and motor functions related to the larger networks in which they are embedded. Understanding the relationships between single-neuron spiking and network activity is therefore of great importance and the latter can be readily estimated from low-frequency brain signals known as local field potentials (LFPs). In this(More)
Surround suppression is a common feature of sensory neurons. For neurons of the visual cortex, it occurs when a visual stimulus extends beyond a neuron's classical receptive field, reducing the neuron's firing rate. While several studies have been attributing the suppression effect on horizontal, long-range lateral or feedback connections, the underlying(More)
The increasing availability of multiunit recordings gives new urgency to the need for effective analysis of "multidimensional" time-series data that are derived from the recorded activity of neuronal ensembles in the form of multiple sequences of action potentials--treated mathematically as point-processes and computationally as spike-trains. Whether in(More)
Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded in a volume around a microelectrode (Buzsáki et al., 2012). The extent of this integration volume has been a subject of some debate, with estimates ranging from a few hundred microns (Katzner et al., 2009; Xing et al., 2009) to several millimeters (Kreiman et al.,(More)
We are developing a biomimetic electronic neural prosthesis to replace regions of the hippocampal brain area that have been damaged by disease or insult. We have used the hippocampal slice preparation as the first step in developing such a prosthesis. The major intrinsic circuitry of the hippocampus consists of an excitatory cascade involving the dentate(More)
Intracortical recordings comprise both fast events, action potentials (APs), and slower events, known as local field potentials (LFPs). Although it is believed that LFPs mostly reflect local synaptic activity, it is unclear which of their signal components are most closely related to synaptic potentials and would therefore be causally related to the(More)
A multi-input modeling approach is introduced to quantify hippocampal neural dynamics. It is based on the Volterra modeling approach extended to multiple inputs. The computed Volterra kernels allow quantitative description of hippocampal transformations and define a predictive model that can produce responses to arbitrary input patterns.(More)
This paper presents a pilot application of the Boolean-Volterra modeling methodology presented in the companion paper (Part I) that is suitable for the analysis of systems with point-process inputs and outputs (e.g., recordings of the activity of neuronal ensembles). This application seeks to discover the causal links between two neuronal ensembles in the(More)
Implementation of neuroprosthetic devices requires a reliable and accurate quantitative representation of the input-output transformations performed by the involved neuronal populations. Nonparametric, data driven models with predictive capabilities are excellent candidates for these purposes. When modeling input-output relations in multi-input neuronal(More)
This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed(More)