Theodoros Katsaounis

Learn More
We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock(More)
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space(More)
Hyperbolic conservation laws with source terms arise in many applications, especially as a model for geophysical flows because of the gravity, and their numerical approximation leads to specific difficulties. In the context of finite volume schemes, many authors have proposed to Upwind Sources at Interfaces, i.e. the “U. S. I.” method, while a cell-centered(More)
We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular we consider a KdV-BBM type equation. Explicit and IMEX Runge-Kutta type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants(More)
The Upwind Source at Interface (U.S.I.) method for hyperbolic conservation laws with source term introduced by Perthame and Simeoni is essentially first order accurate. Under appropriate hypotheses of consistency on the finite volume discretization of the source term, we prove Lp-error estimates, 1≤p <+∞, in the case of a uniform spatial mesh, for which an(More)