Theodore R. Simons

Learn More
Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available software, to(More)
Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark--resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation(More)
SUMMARY Techniques for estimation of absolute abundance of wildlife populations have received a lot of attention in recent years. The statistical research has been focused on intensive small-scale studies. Recently, however, wildlife biologists have desired to study populations of animals at very large scales for monitoring purposes. Population indices are(More)
Many factors affect the number of birds detected on point count surveys of breeding songbirds. The magnitude and importance of these factors are not well understood. We used a bird song simulation system to quantify the effects of detection distance, singing rate, species differences, and observer differences on detection probabilities of birds detected by(More)
Studies at migratory stopover sites along the northern coast of the Gulf of Mexico are providing an understanding of how weather, habitat, and energetic factors combine to shape the stopover ecology of trans-Gulf migrants. We are coupling this understanding with analyses of landscape-level patterns of habitat availability by using spatially explicit models(More)
We used constant effort mist netting during spring migration to sample populations of trans-Gulf migrants at two coastal study sites from 1987 to 1992. Approximately 2,500 individuals of 70 species were netted each season with approximately 5,000 net-hours of effort. Although captures per net hour and total species captured were fairly consistent each year,(More)
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions(More)
The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive(More)
Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ (15)N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g(-1) (range(More)
Remotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains. We evaluated the use of DNBR indices for linking ecosystem process with(More)