Learn More
Modern high-end disk arrays often have several giga-bytes of cache RAM. Unfortunately, most array caches use management policies which duplicate the same data blocks at both the client and array levels of the cache hierarchy: they are inclusive. Thus, the aggregate cache behaves as if it was only as big as the larger of the client and array caches, instead(More)
Inspired by the function, power, and volume of the organic brain, we are developing TrueNorth, a novel modular, non-von Neumann, ultra-low power, compact architecture. TrueNorth consists of a scalable network of neurosynaptic cores, with each core containing neurons, dendrites, synapses, and axons. To set sail for TrueNorth, we developed Compass, a(More)
Guaranteed I/O performance is needed for a variety of applications ranging from real-time data collection to desktop multimedia to large-scale scientific simulations. Reservations on throughput, the standard measure of disk performance, fail to effectively manage disk performance due to the orders of magnitude difference between best-, average-, and(More)
This paper provides an overview of the Intelligent Bricks project in progress at IBM Research. It describes common problems faced by data center operators and proposes a comprehensive solution based on brick architectures. Bricks are hardware building blocks. Because of certain properties, defined here, scalable and reliable systems can be built with(More)
—Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. Judiciously balancing the dual objectives of functional capability and implementation/operational cost, we develop a simple, digital, reconfigurable, versatile spiking neuron model(More)
—Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. The sequential programming paradigm of the von Neumann architecture is wholly unsuited for TrueNorth. Therefore, as our main contribution, we develop a new programming paradigm that(More)
—Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. The non-von Neumann nature of the TrueNorth architecture necessitates a novel approach to efficient system design. To this end, we have developed a set of abstractions, algorithms,(More)
Large-scale storage systems often hold data for multiple applications and users. A problem in such systems is isolating applications and users from each other to prevent their corresponding workloads from interacting in unexpected ways. Another is ensuring that each application receives an appropriate level of performance. As part of the solution to these(More)
Large-and small-scale storage systems frequently serve a mixture of workloads, an increasing number of which require some form of performance guarantee. Providing guaranteed disk performance—the equivalent of a " virtual disk " —is challenging because disk requests are non-preemptible and their execution times are stateful, partially non-deterministic, and(More)