Theodore Garland

Learn More
The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately(More)
Replicated within-family selection for increased voluntary wheel running in outbred house mice (Mus domesticus; Hsd:ICR strain) was applied with four high-selected and four control lines (10 families/line). Mice were housed individually with access to activity wheels for a period of 6 days, and selection was based on the mean number of revolutions run on(More)
Two phylogenetic comparative methods, independent contrasts and generalized least squares models, can be used to determine the statistical relationship between two or more traits. We show that the two approaches are functionally identical and that either can be used to make statistical inferences about values at internal nodes of a phylogenetic tree(More)
An animal model was developed to study effects on components of exercise physiology of both "nature" (10 generations of genetic selection for high voluntary activity on running wheels) and "nurture" (7-8 wk of access or no access to running wheels, beginning at weaning). At the end of the experiment, mice from both wheel-access groups were significantly(More)
Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful(More)
Laboratory house mice (Mus domesticus) that had experienced 10 generations of artificial selection for high levels of voluntary wheel running ran about 70% more total revolutions per day than did mice from random-bred control lines. The difference resulted primarily from increased average velocities rather than from increased time spent running. Within all(More)
Organismal performance abilities occupy a central position in phenotypic evolution; they are determined by suites of interacting lower-level traits (e.g., morphology and physiology) and they are a primary focus of natural selection. The mechanisms by which higher levels of organismal performance are achieved during evolution are therefore fundamentally(More)
To test the hypothesis that body size and activity levels are negatively genetically correlated, we conducted an artificial selection experiment for increased voluntary wheel-running activity in house mice (Mus domesticus). Here, we compare body masses of mice from control and selected lines after 14 generations of selection. In both groups, beginning at(More)
Flying animals may experience a selective constraint on gut volume because the energetic cost of flight increases and maneuverability decreases with greater digesta load. The small intestine is the primary site of absorption of most nutrients (e.g., carbohydrates, proteins, fat) in both birds and mammals. Therefore, we used a phylogenetically informed(More)
In nature, many animals use intermittent rather than continuous locomotion. In laboratory studies, intermittent exercise regimens have been shown to increase endurance compared with continuous exercise. We hypothesized that increased intermittency has evolved in lines of house mice (Mus domesticus) that have been selectively bred for high voluntary(More)