Learn More
Traditional descriptions of gas-particle partitioning of organic aerosols (OA) rely solely on thermodynamic properties (e.g., volatility). Under realistic conditions where phase partitioning is dynamic rather than static, the transformation of OA involves the interplay of multiphase partitioning with oxidative aging. A key challenge remains in quantifying(More)
Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization(More)
Aerosols containing aliphatic hydrocarbons play a substantial role in the urban atmosphere. Cyclic alkanes constitute a large fraction of aliphatic hydrocarbon emissions originating from incomplete combustion of diesel fuel and motor oil. In the present study, cholestane (C27H48) is used as a model system to examine the OH-initiated heterogeneous oxidation(More)
The oxidative evolution ("aging") of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized(More)
The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double(More)
The kinetics and products of the heterogeneous OH-initiated oxidation of squalene (C30H50, a branched alkene with 6 C═C double bonds) particles are measured. These results are compared to previous measurements of the OH-initiated oxidation of linoleic acid (C18H32O2, a linear carboxylic acid with 2 C═C double bonds) particles to understand how molecular(More)
The heterogeneous reaction of OH radicals with sub-micron unsaturated fatty acid particles in the presence of H2O2 and O2 is studied to explore how surface OH addition reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. In the presence of 20.7 ppm [H2O2] in a 10% mixture of O2 in N2, the effective(More)
Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally(More)
The reactive uptake coefficients γ, for nitrate radical, NO(3), on ∼100 nm diameter squalane and squalene aerosol were measured (1 atm pressure of N(2) and 293 K). For squalane, a branched alkane, γ(NO(3)) of 2.8 × 10(-3) was estimated. For squalene which contains 6 double bonds, γ(NO(3)) was found to be a function of degree of oxidation with an initial(More)