Learn More
A registration method for motion estimation in dynamic medical imaging data is proposed. Registration is performed directly on the dynamic image, thus avoiding a bias towards a specifically chosen reference time point. Both spatial and temporal smoothness of the transformations are taken into account. Optionally, cyclic motion can be imposed, which can be(More)
Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography data is relevant in clinical practice. Whereas numerous methods have been presented for this purpose, up to now no standardized evaluation methodology has been published to reliably evaluate and compare the performance of the existing or newly developed coronary(More)
Tracking of tubular elongated structures is an important goal in a wide range of biomedical imaging applications. A Bayesian tube tracking algorithm is presented that allows to easily incorporate a priori knowledge. Because probabilistic tube tracking algorithms are computationally complex, steps towards a computational efficient implementation are(More)
This paper presents a Bayesian framework for tracking of tubular structures such as vessels. Compared to conventional tracking schemes, its main advantage is its non-deterministic character, which strongly increases the robustness of the method. A key element of our approach is a dedicated observation model for tubular structures in regions with varying(More)
Quantification of the degree of stenosis or vessel dimensions are important for diagnosis of vascular diseases and planning vascular interventions. Although diagnosis from three-dimensional (3-D) magnetic resonance angiograms (MRA's) is mainly performed on two-dimensional (2-D) maximum intensity projections, automated quantification of vascular segments(More)
We present a conceptual framework and a process model for feature extraction and iconic visualization. The features are regions of interest extracted from a data set. They are represented by attribute sets, which play a key role in the visualization process. These attribute sets are mapped to icons, or symbolic parametric objects, for visualization. The(More)
In the past few years, a number of two-dimensional (2-D) to three-dimensional (3-D) (2-D-3-D) registration algorithms have been introduced. However, these methods have been developed and evaluated for specific applications, and have not been directly compared. Understanding and evaluating their performance is therefore an open and important issue. To(More)
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of(More)
Computed tomography angiography (CTA), a non-invasive imaging technique, is becoming increasingly popular for cardiac examination, mainly due to its superior spatial resolution compared to MRI. This imaging modality is currently widely used for the diagnosis of coronary artery disease (CAD) but it is not commonly used for the diagnosis of ventricular and(More)