Learn More
A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the(More)
  • Theo Odijk
  • Physical review. E, Statistical, nonlinear, and…
  • 2008
A scaling analysis is presented of the statistics of long DNA confined in nanochannels and nanoslits. It is argued that there are several regimes in between the de Gennes and Odijk limits introduced long ago. The DNA chain folds back on itself giving rise to a global persistence length that may be very large owing to entropic deflection. Moreover, there is(More)
Nucleoids of Escherichia coli were isolated by osmotic shock under conditions of low salt in the absence of added polyamines or Mg(2+). As determined by fluorescence microscopy, the isolated nucleoids in 0.2 M NaCl are expanded structures with an estimated volume of about 27 microm(3) according to a procedure based on a 50% threshold for the fluorescence(More)
A theory is presented of the elongation of double-stranded DNA confined in a nanochannel based on a study of the formation of hairpins. A hairpin becomes constrained as it approaches the wall of a channel which leads to an entropic force causing the hairpin to tighten. The DNA in the hairpin remains double-stranded. The free energy of the hairpin is(More)
  • Theo Odijk
  • Philosophical transactions. Series A…
  • 2004
Several controversial issues concerning the packing of linear DNA in bacteriophages and globules are discussed. Exact relations for the osmotic pressure, capsid pressure and loading force are derived in terms of the hole size inside phages under the assumption that the DNA globule has a uniform density. A new electrostatic model is introduced for computing(More)
DNA regions close to the origin of replication were visualized by the green fluorescent protein (GFP)-Lac repressor/lac operator system. The number of oriC-GFP fluorescent spots per cell and per nucleoid in batch-cultured cells corresponded to the theoretical DNA replication pattern. A similar pattern was observed in cells growing on microscope slides used(More)
To study the dynamics and organization of the DNA within isolated Escherichia coli nucleoids, we track the movement of a specific DNA region. Labeling of such a region is achieved using the Lac-O/Lac-I system. The Lac repressor-GFP fusion protein binds to the DNA section where tandem repeats of the Lac operator are inserted, which allows us to monitor the(More)
A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature(More)
A theory is presented for lambdaC, the coefficient of the first-order correction in the density of the collective diffusion coefficient, for protein spheres interacting by electrostatic and adhesive forces. An extensive numerical analysis of the Stokesian hydrodynamics of two moving spheres is given so as to gauge the precise impact of lubrication forces.(More)
The dynamics of water and sodium counter-ions (Na(+)) in a C222(1) orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic(More)