Learn More
This paper addresses the problem of generating possible object locations for use in object recognition. We introduce selective search which combines the strength of both an exhaustive search and segmentation. Like segmentation, we use the image structure to guide our sampling process. Like exhaustive search, we aim to capture all possible object locations.(More)
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been proposed. Because many different descriptors exist, a(More)
Color constancy is the ability to measure colors of objects independent of the color of the light source. A well-known color constancy method is based on the gray-world assumption which assumes that the average reflectance of surfaces in the world is achromatic. In this paper, we propose a new hypothesis for color constancy namely the gray-edge hypothesis,(More)
For object recognition, the current state-of-the-art is based on exhaustive search. However, to enable the use of more expensive features and classifiers and thereby progress beyond the state-of-the-art, a selective search strategy is needed. Therefore, we adapt segmentation as a selective search by reconsidering segmentation: We propose to generate many(More)
The purpose is to arrive at recognition of multicolored objects invariant to a substantial change in viewpoint, object geometry and illumination. Assuming dichromatic reflectance and white illumination, it is shown that normalized color rgb, saturation S and hue H, and the newly proposed color models c 1 c 2 c 3 and l 1 l 2 l 3 are all invariant to a change(More)
Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the-art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static(More)
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used. To increase illumination invariance and discriminative power, color descriptors have been proposed only recently. As many descriptors exist, a structured overview of color invariant(More)
Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware make these existing solutions unattractive and impossible to use on standard (i.e., visible wavelength),(More)
We aim at combining color and shape invariants for indexing and retrieving images. To this end, color models are proposed independent of the object geometry, object pose, and illumination. From these color models, color invariant edges are derived from which shape invariant features are computed. Computational methods are described to combine the color and(More)
The ubiquitous application of eye tracking is precluded by the requirement of dedicated and expensive hardware, such as infrared high definition cameras. Therefore, systems based solely on appearance (i.e. not involving active infrared illumination) are being proposed in literature. However, although these systems are able to successfully locate eyes, their(More)